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Abstract

Signature-based techniques give mathematical insight into the interactions between complex streams of
evolving data. These insights can be quite naturally translated into numerical approaches to understanding
streamed data, and perhaps because of their mathematical precision, have proved useful in analysing streamed
data in situations where the data is irregular, and not stationary, and the dimension of the data and the sample
sizes are both moderate.

Understanding streamed multi-modal data is exponential: a word in n letters from an alphabet of size
d can be any one of dn messages. Signatures provide a “lossy compression” of the information contained
within such a stream by filtering out the parameterisation noise. More concretely, suppose we have a time
series with 3 channels and N samples. There are 1+3N+ 3N(3N+1)

2
= 1+ 9

2
N(N+1) linearly independent

quadratic polynomials defined on the time series. But the signature of this time series truncated to depth 2
only consists of 1 + 3 + 32 = 13 components which is, in particular, independent of the number of samples
N . However, whilst the independence of the number of samples N has removed an exponential amount
of noise, the dependence on the number of channels to the power of the depth ensures that an exponential
amount of information remains.

This survey aims to stay in the domain where that exponential scaling can be managed directly. Scalability
issues are an important challenge in many problems but would require another survey article and further
ideas. This survey describes a range of contexts where the data sets are small and the existence of small sets
of context free and principled features can be used effectively.

The mathematical nature of the tools can make their use intimidating to non-mathematicians. The exam-
ples presented in this article are intended to bridge this communication gap and provide tractable working
examples drawn from the machine learning context. Notebooks are available online for several of these ex-
amples. This survey builds on the earlier paper of Ilya Chevryev and Andrey Kormilitzin which had broadly
similar aims at an earlier point in the development of this machinery.

This article illustrates how the theoretical insights offered by signatures are simply realised in the analysis
of application data in a way that is largely agnostic to the data type. Larger and more complex problems would
expect to address scalability issues and draw on a wider range of data science techniques.

The article starts with a brief discussion of background material related to machine learning and signa-
tures. This discussion fixes notation and terminology whilst simplifying the dependencies, but these back-
ground sections are not a substitute for the extensive literature they draw from.

Hopefully, by working some of the examples the reader will find access to useful and simple to deploy
tools; tools that are moderately effective in analysing longitudinal data that is complex and irregular in con-
texts where massive machine learning is not a possibility.

Mathematical Subject Classification 2020: 60L10 (Primary); 93C15, 68Q32, 34F05 (Secondary).
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1. Introduction
Streams of sequential information can be found almost everywhere in our society. They need to be understood,
analysed, and interpreted. It might be a stream of spoken words, financial data, or ones hospital records. The
simplest example of sequential information is probably a text. One sees quickly that the number of words
is exponential in the number of letters. Most streams involve multiple channels, and understanding the con-
sequences of the “data” involve understanding how the channels interleave. Suppose one channel recorded
arrivals of stock from deliveries at a supermarket. Another involved the demand from customers. To predict
sales requires a detailed understanding of how these channels interact. The order of events matters. This can
be very expensive using classical methodology. Smoothing the deliveries and the demand result in data that
does not indicate the shortfall because the demand came before the arrival of deliveries.

A stream of sequential information can be interpreted as a path. Reparameterisation then gives an infi-
nite dimensional group of symmetries. Typically symmetries are problematic for machine learning; different
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representations of the same object introduce an additional fact that the model must learn. One route around
this issue for paths is to work with the unparameterised path; that is, the equivalence class with respect to the
group of reparameterisations (sometimes called a shape or a contour). Only the data itself is important and
not the particular choice of representation; we only want to extract information provided by the data that is
independent of the choice of how the data is viewed. For example, we may be interested in which character a
sequence of pen strokes results in, but it is of no importance how quickly the character is drawn. A figure ’3’
is the same regardless of how quickly it is written.

The signature of a path is a forgetful summary that is intrinsically multidimensional. It captures the order
in which things happen, the order in which the path visits locations, but completely ignores the parameterisation
of the data. The parameterisation noise is filtered out. It does not matter if the path was sampled 75 times
because there were 75 deliveries that week and 65 times the week after. But it remembers the order of events
perfectly. In a natural way, it produces a vector embedding of the path that is not sensitive to how often the
path is sampled but is fully sensitive to the order of events on the different channels. This can allow the
detection of such events far more efficiently than the customary time series approaches. The signature of a
path is a mathematical transform that faithfully describes the curve, or the unparameterised path, but removes
completely the infinite dimensional group of parameterisation based data symmetries.

In this article, we survey a variety of contexts where signatures have been applied to machine learning.
This survey is intended to act as a pseudo-sequel to the introduction provided in [Chevyrev and Kormilitzin,
2016]. The applications selected for inclusion illustrate that the theoretical benefits, guaranteed by the under-
lying theory of path signatures, are being fully realised in practical problems. In some sense, our article may
be thought of as a continuation of Section 2 in [Chevyrev and Kormilitzin, 2016] to cover more sophisticated
uses of the signature transform in machine learning made after the appearance of [Chevyrev and Kormilitzin,
2016].

In the interest of readability we do not present this article as a proper sequel to [Chevyrev and Kormilitzin,
2016]. Instead, we cover some over-lapping material within our first few sections, hence the term pseudo-
sequel. The inclusion of such material is two-fold. Firstly, they provide a minimal coverage of the material
required for the later surveys of the applications of signature techniques for the reader unfamiliar with the basic
ideas, making this work more self-contained. Secondly, they allow us to fix notation and terminology that will
be used later, forming a sort-of dictionary that can be referred back to during the latter sections.

The over-lapping material is approached from a different perspective to the presentation in [Chevyrev and
Kormilitzin, 2016]. Subsection 2.1 provides a very basic introduction to regression via a simple example of
monomial regression on the unit interval [0, 1] ⊂ R. Subsection 2.2 presents a sensible and informative way to
convert a data stream of values to a data stream of increments. In particular, no information is lost under this
transform. Subsection 2.3 fixes the mathematical framework for the regression problem that we will consider
throughout this article.

Subsection 2.4 introduces some basic strategies to tackling the regression problem introduced in Subsec-
tion 2.3. The viewpoint adopted in Subsection 2.4 is that of a beginner who has no prior experience with ma-
chine learning. The machine learning material included in Section 2.4 is only the essentials we later require.
The reader seeking a more comprehensive introduction to machine learning is directed to the book [Géron,
2022]. The book [Géron, 2022] covers the fundamentals of machine learning, classification, regression, neu-
ral networks and deep learning with exercises and coded examples. The more recent book [Raschka et al.,
2022] covers a broadly similar collection of topics whilst also providing coded examples. A major difference
between [Géron, 2022] and [Raschka et al., 2022] is that the coded examples in [Géron, 2022] use TensorFlow,
whilst the coded examples in [Raschka et al., 2022] use PyTorch. In addition, both [Géron, 2022] and [Raschka
et al., 2022] include introductions to more recent developments within the field of data science including, for
example, large language models, attention, and transformers. A more theoretical perspective of the field can
be found in [Hastie et al., 2017], for example.

Subsection 2.5 explains the natural correspondence between a stream of increments and a continuous path.
Additionally, Subsection 2.5 presents some simple augmentations that can be applied to streamed data. Only
augmentations used in later applications are covered.

Subsection 2.6 informally introduces the signature transform as an attractive method of summarising a
stream of increments via summarising the corresponding continuous path (cf. Subsection 2.5). After infor-
mally introducing the signature as a method to summarise a path in Section 2.6 that captures all the relevant
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information, the mathematical framework required to rigorously talk about signatures is covered in Section
2.7. Keeping in mind our adopted machine learning perspective, signature properties and related theorems are
all stated first for continuous paths of bounded p-variation for 1 ≤ p < 2 in Subsection 2.8. For the majority
of this article we stay within the setting of considering signatures of continuous paths of bounded 1-variation;
and so the main theoretical requirements are the results presented in Subsection 2.8.

However, in places we necessarily require the more involved theory of rough paths. Indeed, it is well
known that the path t 7→ Bt for a standard Brownian motion Bt only has finite p-variation for p > 2. Thus
the theory of rough paths is required to make sense of the signature of a path arising from the evolution of
Brownian motion. Consequently we provide a terse presentation of the aspects of rough path theory that we
will require in Subsection 2.9.

As a pseudo-sequel to [Chevyrev and Kormilitzin, 2016], we assume the reader has had some exposure to
signatures. Our discussion of signatures assumes a greater mathematical maturity than [Chevyrev and Kormil-
itzin, 2016] and, in contrast to the example-heavy introduction given in [Chevyrev and Kormilitzin, 2016], we
favour a succinct presentation of the key theoretical aspects. Only the mathematical properties of signatures di-
rectly relevant to the later applications are included in Subsections 2.7, 2.8 and 2.9. A wider range of properties
of path signatures can be found in the survey article [Lyons, 2014], whilst the reader seeking a comprehensive
introduction to the theory is directed to the lecture notes [Lyons et al., 2007].

The entirety of Section 2 is included with the aim of providing a dictionary for terminology and notation
used throughout the later sections. The presentation of this material is not designed to provide an in-depth
coverage; only the specific elements required to understand the later applications are covered. The reader
already comfortable with Regression, Feature Maps, Kernels, Rough Paths, and the mathematical theory of
Signatures may safely skim Subsections 2.1 – 2.9.

The material covered ceases over-lapping with the content of [Chevyrev and Kormilitzin, 2016] in Section
3. For the readers ease of navigation, we briefly summarise the content included in the remaining sections.

• Section 3 provides both a basic outline for the use of the signature transform as a feature map, and the
theoretical results underpinning the suitability of the signature transform as a feature map.

• Section 4 introduces Controlled Differential Equations (CDEs) and covers the log-ODE method. The
log-ODE method is a technique for numerically solving CDEs using the log signature, which is itself
introduced in Subsections 2.7, 2.8 and 2.9.

• Section 5 provides an introduction to the RoughPy [Morley and Lyons, 2024] python package for com-
puting truncated signatures and log signatures.

• Section 6 explains how signatures can be extended to distributions without any restrictions on the dis-
tributions, as in [Chevyrev and Oberhauser, 2022] for example. We additionally outline how this theory
offers an approach to distribution regression following [Lemercier et al., 2021].

• Section 7 covers the work [Kidger et al., 2019] proposing how the signature transform may be incor-
porated into a neural network. A particular consequence is that the appropriate depth to truncate the
signature to should be treated as a trainable parameter, and hence be determined by the data.

• Section 8 focuses on the fact that the signature transform is a kernel. It covers the work of [Salvi et al.,
2021] detailing how the associated kernel function can be effectively approximated. This allows the full
signature transform to be used without truncation.

• Section 9 covers the introductions of Neural Controlled Differential Equations (Neural CDEs) made
in [Kidger et al., 2020] and of Neural Rough Differential Equations (Neural RDEs) made in [Morrill
et al., 2021b]. The universality guarantees associated with Neural CDEs are fundamentally reliant on the
theory of path signatures, whilst Neural RDEs are built around the theory of log signatures.

• Section 10 covers the work of [Wang et al., 2019] on how signature transform methods can be used in
the extraction of emotion from segments of speech.

4
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2 Background Material Terry Lyons & Andrew D. McLeod

• Section 11 covers a range of medical applications of signature transform methods. These include distin-
guishing between Bipolar Disorder and Borderline Personality Disorder [Perez Arribas et al., 2018,Wang
et al., 2020], diagnosing Alzheimer’s disease [Moore et al., 2019], information extraction from medi-
cal prescriptions [Biyong et al., 2020], and early detection of Sepsis [Morrill et al., 2019, Morrill et al.,
2020].

• Section 12 covers the work of [Yang et al., 2022] using signature transform methods to recognise human
actions from the motion of 20-40 markers located on the person. A python notebook exists (see Subsec-
tion 12.5) allowing the reader to train their own classifier (following a variant of the method proposed
in [Yang et al., 2022]).

• Section 13 covers the work of [Lemercier et al., 2021] realising the use of a generalised signature trans-
form for distribution regression both with and without truncation of the involved signatures.

• Section 14 covers the use of signatures for anomaly detection proposed in [Shao et al., 2020].

• Section 15 covers randomised signatures as developed in the works [Cuchiero et al., 2021b, Akyildirim
et al., 2022], and illustrates their use in [Akyildirim et al., 2022] for the detection of market manipulation
attempts from financial data.

Whilst a wide range of applications are covered within this article, it remains a far from comprehensive pre-
sentation of the uses of path signature techniques within machine learning. Indeed the list of recent works not
discussed within this article includes uses of signature techniques in finance [Cuchiero et al., 2023a, Neufeld
and Schmocker, 2022, Bank et al., 2023, Cuchiero and Möller, 2023], optimal stopping problems [Bayer et al.,
2023c, Bayer et al., 2023d], stochastic differential equations [Cuchiero et al., 2023c], universal approximation
theory [Cuchiero et al., 2022, Varzaneh et al., 2022, Cuchiero et al., 2023b], neural network stability [Bayer
et al., 2023b], generalized Magnus expansion [Friz et al., 2022], functional Taylor expansions [Dupire and
Tissot-Daguette, 2022, Dupire and Tissot-Daguette, 2025], economic nowcasting [Cohen et al., 2023], and
longitudinal language modelling [Tseriotou et al., 2023b, Tseriotou et al., 2023a]. Moreover this list of works
not included in this article is far from exhaustive. Including every topic within a single article is infeasible.
But hopefully, after working their way through this article, the reader will be suitably equipped to read and
understand other works considering the use of path signature techniques within a machine learning context.

Acknowledgements: This work was supported by the DataSıg Program under the EPSRC grant ES/S026347/1,
the Alan Turing Institute under the EPSRC grant EP/N510129/1, the Mathematical Foundations of Intelligence:
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of the DataSıg team. This work was funded by the Defence and Security Programme (funded by the UK
Government). For the purpose of open access, the author has applied a CC BY public copyright licence to any
Author Accepted Manuscript (AAM) version arising from this submission. We thank the anonymous referee
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2. Background Material

2.1. Illustrative Toy Regression Problem
Regression is a basic, yet extremely common, learning task in which real-valued functions are modelled using
sets of data. The fundamental goal of regression is to learn a function that predicts outcome values based on a
specified collection of input features. The following simple example of regression involving the consideration
of the monomials on the unit interval [0, 1] ⊂ R exhibits some of the theoretical considerations that are central
to the use of signatures within machine learning.
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Suppose we want to learn a continuous function ρ : [0, 1] → R using its values at a given collection of
points x1, . . . , xN ∈ [0, 1], for some N ∈ N. We assume that the points x1, . . . , xN give a “good approxima-
tion” (in some sense) of [0, 1], and that we want to learn the response of ρ to any input in [0, 1]. An elementary
rarely-used, yet still insightful, approach is to consider the functions ϕk : [0, 1] → R for k ∈ N, defined by
ϕk(x) := xk, as the feature functions, i.e. the monomials. Then we fix a (large) K0 ∈ N and try to express

ρ ≈
K0∑
k=0

akϕk. (2.1)

If (2.1) is possible, then the coefficients ak are given by the linear equations

yi =

K0∑
k=0

akϕk(xi) (2.2)

for each i ∈ {1, . . . , N}. We want to use the linear combination in (2.1) to predict the value of ρ at new
instance in [0, 1]. If the equations (2.2) are non-degenerate, then the solution is unstable; any new instance
will lead to a completely different set of coefficients ak. Hence it is desirable that these equations should
be degenerate, and solving (2.2) often involves numerical techniques such as Singular Value Decomposition
(SVD) or gradient descent algorithms involving suitable cost functions. Degeneracy in the equations can also
be handled via regularisation techniques including, for example, Ridge regression, LASSO regression, and
dropout. An in-depth discussion of such approaches may be found in [Géron, 2022] or [Raschka et al., 2022],
for example.

The success of this approach to approximating ρ is fundamentally reliant on the linear span of the set
{ϕk | k ∈ N} being dense within the class of functions C0([0, 1];R). In this case, since the monomials span
an algebra and the unit interval is a compact subset of R, the Stone–Weierstrass theorem (see [Stone, 1948],
for example) provides the required density.

2.2. Incremental Streamed Data
A fundamental idea central to data science, illustrated by the simple monomial example in Subsection 2.1, is
that if we are able to represent data as vectors in some Euclidean space, then we can approximate continuous
functions on compact domains by polynomials and learn the polynomial from the data. From a theoretical
perspective this is valid; the Stone–Weierstrass theorem [Stone, 1948] tells us that, on compact subsets, poly-
nomials are a dense subset of the continuous functions.

In practice this approach can work well when the data consists of time-series with moderate numbers
of both channels and samples. Examples of tasks on which polynomial regression performs well include
predicting the median house price for a district using 10 recorded attributes per district (see Chapter 2 in [Géron,
2022]), predicting the Traction Energy Consumption of an urban car journey based on knowledge of the time-
of-day at which the journey is made [Kreicbergs and Grislis, 2019], and predicting the number of deaths
resulting from COVID-19 in US states based on four independent parameters [Singh and Bawa, 2022].

But this approach runs into problems for tasks in which the order of events is important. In order to
consider a toy problem illustrating one particular issue, let N ∈ Z≥1 and suppose we have a finite collection
of time series, with each time series consisting of 2 channels and N samples. Suppose that each time series x
has the following structure. If x = {(x1,i, x2,i)}Ni=1 then the following properties are true.

• For every i ∈ {1, . . . , N} we have x1,i, x2,i ∈ {0, 1}.

• For j ∈ {1, 2} if i ∈ {1, . . . , N} and xj,i = 1, then for every k ∈ {i, . . . , N} we have xj,k = 1.

• At least one of x1,N and x2,N is equal to 1.

Consider the task of determining which channel is the first to change from 0 to 1.
Each time series x can be viewed as an element in R2N . We could try to learn a quadratic polynomial

that can determine which channel is the first to change from 0 to 1. However, ignoring any considerations
regarding whether a quadratic polynomial capable of doing this even exists, we observe that there are 1 +
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3N + 2N2 linearly independent quadratic polynomials determined on x. Consequently we must consider
linear combinations of 1 + 3N + 2N2 elements in order to learn our desired quadratic polynomial. This
quickly becomes intractable as the number of samples increases.

A large number of samples is reasonable. The sampling frequency needs to be high enough to separate
the increases of the channels. If, for example, the time series correspond to a record of a patients heart rate and
body temperature, with the change from 0 to 1 represents an increase in the heart rate or the body temperature
respectively, then it may be the case that separating which one increases first could required taking a sample
each second. This would result inN = 3600 samples over each hour, leading to the consideration of 25930801
linearly independent quadratic polynomials.

As we will see later (cf. Section 5), the signature provides a summary of time series that efficiently
captures the order of events. In the toy problem above, the signature truncated to depth 2 can determine which
channel changes from 0 to 1 first. This involves only 7 components rather than the 1+3N +2N2 components
of a linear combination of a basis of quadratic polynomials. The key advantage is that the number of signature
components required is independent of the number of samples (though it does still grow exponentially with the
number of channels).

Using the signature to summarise a time-series requires associating the time-series with a continuous path.
A commonly used method is making a choice of rule for continuously interpolating between the entries of the
time-series; examples include linear interpolation, rectilinear interpolation, or cubic spline interpolation. A
weakness of this approach is that the choice of interpolation is typically ad-hoc; there is no given natural best
choice. However, if the time-series is a stream of increments, then the concatenation of the entries provides a
sensible route to determining a path with which the time-series can be associated (cf. Section 2.5). This natural
association makes incremental streamed data (i.e. streams whose entries are all incremental changes) more
desirable for use with path signature techniques.

The incremental change in a channels values is often vital information. For example, suppose we have a
stream containing the recorded temperatures of a hospital patient. Observing the value 38◦C alone is insuffi-
cient to conclude whether the patient is doing well or not. Knowledge of this values relation the the previous
value is required. If the temperature was previously 39◦C then the new value of 38◦C suggests a positive
trajectory for the patient; if the previous value of the temperature however was 37◦C, then the new value 38◦C
suggests a more concerning trajectory for the patient, indicating that some form of medical intervention may
be required.

Moreover, there are situations in which only the incremental changes are relevant, i.e. when the underlying
actual values are not relevant. For example, doctors may be interested in knowing that a patient has taken 2
paracetamol tablets since yesterday, but they will not be interested in knowing the precise number of tablets the
patient has taken over their entire lifetime. Similarly, in a financial context, the amount of volatility experienced
over the past hour can be informative; the total amount of volatility experienced since the beginning-of-time is
not. When planning a journey, the number of buses from a particular stop in the next hour could be helpful; but
knowing how many buses have ever departed from that stop is likely not helpful. An interesting facet of these
examples is that the irrelevancy of the actual value is, at least in part, due to its lack of availability.

However, it is important to realise that their are situations in which the incremental changes alone are
insufficient. Indeed in the hospital patient temperature records example above, observing the incremental
change of +0.5◦C is insufficient to conclude whether the patient is doing well. If the last value before this
change was 35◦C then this increase is a good sign. But if the last value before this change was 38◦C then this
increase is not a good sign, indicating that some form of medical intervention may be required.

An important takeaway from this example is that knowledge of both a quantities actual values and the
incremental changes of the quantity are required to determine the context of the information provided by a
stream. Consequently, with the aim of using path signature techniques to summarise streams, we seek a way
to record/store any given stream as a stream of increments that encodes both the incremental changes of the
values and the actual values themselves. A definition of a stream can be found in Subsection 2.3 (cf. (2.4)).

Before turning our attention to achieving this, we first observe a third aspect of a data stream that is
desirable to capture. Namely, whether each entry of the stream is the result of a new measurement being taken,
or if it is the result of the previous value being carried across without a new measurement being taken. The
importance of this distinction can be again seen via the example of a hospital patients recorded temperatures.
Suppose the same temperature of 36.5◦C is recorded in successive entries. Then whether or not the second
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entry is a new measurement provides information. If it is not a new measurement, then it indicates that the
patients condition is deemed stable enough to not require a new check of their temperature. But if it is a new
measurement, then it indicates that the patients condition was deemed concerning enough, for some unknown
reason, to warrant a new check of their temperature.

We seek a method of transforming any stream into a stream of increments that satisfies the following
properties.

• No information is lost; any information present in the original stream can be recovered from the resulting
stream of increments.

• Both the incremental changes and the actual values of each channel of the original stream are encoded
in the resulting stream of increments.

• If available, whether or not each entry of each channel of the original stream is the result of a new
measurement or not is encoded in the resulting stream of increments.

• The transform is injective; distinct streams should be transformed to distinct streams of increments.

We now informally discuss a transformation satisfying these properties in the simple setting of having a stream
x = (x1, . . . , xn) of real numbers; that is, for every i ∈ {1, . . . , n} we have xi ∈ R. The first step is to mimic

a “pen-on, pen-off” style transformation and introduce a second channel recording a 1 for each entry that is the
result of a new measurement, and a 0 for each entry that is not the result of a new measurement. This results in
a new stream x′ =

(
(x1, a1), . . . , (xn, an)

)
such that, for each i ∈ {1, . . . , n}, xi ∈ R and ai ∈ {0, 1}. If it

is unknown whether xi is the result of a new measurement or not we take ai := 1; by default, we assume that
each recorded value is the result of a new measurement unless explicitly told otherwise.

With an eventual aim of converting the stream x′ into a stream of incremental changes, we first encode
information about the values x1, . . . , xn in a manner that is invariant under translation. We do this by explicitly
encoding both the first value x1 and the last value xn via “invisibility-reset” type augmentations. To be precise,
we replace the stream x′ by the new stream x′ =

(
(0, 0), (x1, 0), (x1, a1), . . . , (xn, an), (xn, 0), (0, 0)

)
. The

“invisibility-reset” aspect to encode the first value x1 and the last value xn is done via a “Lead-Lag” type
augmentation in which one channel updates, and then there is a definite delay until the other channel updates.
In this case, at the start we first update 0 to x1 and then update 0 to a1 after a delay; whilst at the end we update
an to 0, and then update xn to 0 after a delay.

This “Lead-Lag” delayed updating (cf. Subsection 2.5) is a simple example of a sliding variable giving
information at a point about what is happening on a neighbourhood of the point. Unfortunately it accidentally
fixes a parameterisation of the data set via the explicit choice of the number of delay steps. It would be possible
to design time-invariant contextual variables to provide information at a point about what is happening on a
neighbourhood of the point. For example, taking the signature of a path over previous interval started at the
time the path last entered the closed unit ball centred at the current location would give a more path intrinsic
method.

Choosing to explicitly encode the first and last values is natural from a modelling perspective. It is these
values that are particularly informative for a wide variety of tasks. For example, if our aim is to predict the
subsequent values of a quantity (i.e. predict the next values of stock prices, patients body temperature etc) then
the last known value of the quantity will be of particular significance. But if the task is classify the outcome of
a quantities evolution (i.e. medical diagnosis based on medical records, whether an urban areas infrastructure
will be sufficient to deal with demand etc) then the first value will be of particular significance. In these cases
it is desirable to understand from the first recorded measurement what the likely outcome will be.

Moreover, the first and last entries of the stream are distinct from every other entry in that they only have
one neighbouring entry. Every other entry has both a proceeding entry and a subsequent entry with which it can
be compared. The first entry has no proceeding entry, and the last entry has no subsequent entry. Augmenting
the stream by adding in additional entries to proceed the first entry and follow the last entry is a sensible way
to make the first and last entries more uniform with respect to the other entries.

We choose to use the value 0 to both proceed x1 and succeed xn. As mentioned previously, one benefit of
this is that the value x1 and xn will be explicitly encoded in a translation invariant manner. In particular, they
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will remain encoded after the stream is replaced by its stream of incremental changes. Another benefit is that
comparing x1 and xn with 0 makes sense for all data types; it represents comparison with the default setting of
not having a measurement. Whilst in certain contexts it is arguably more sensible to compare these values with
some notion of average (i.e. compare body temperature with average human body temperature value), there
are settings in which such an average value does not make sense. For example, if the stream represents a series
of x-rays of a patient, it is unclear what meaning should be given to the average x-ray. But the notion of not
having an x-ray does make sense.

Finally, the stream x′ is replaced by the stream of its incremental differences. That is, we set

x′ :=
(
(x1, 0), (0, a1), (x2 − x1, a2 − a1), . . . , (xn − xn−1, an − an−1), (0,−an), (−xn, 0)

)
. (2.3)

This transformation takes a stream with one channel to a stream with two channels. For a general stream with
d channels, we will apply the transformation outlined above to each channel. Hence overall it will result in the
stream with d channels being transformed to a stream with 2d channels (cf. Subsection 2.3).

We end this subsection with a brief discussion of some possible redundancies in this transformation.
The first is that if the value of the entries of the stream are known to be of no importance, then avoiding the
invisibility-reset aspect of the transformation is a more cost-effective option. The second is that we only really
require implementing the invisibility-reset aspect to one of x1 or xn. After it has been implemented to one
of these values, the other value is then recoverable from the resulting stream of increments. Our choice to
include this aspect for both the first and last entries is made for two main reasons. Firstly, it emphasises the
extra importance placed on the first and last values. Secondly, it makes our transformation more symmetrical,
in particular ensuring that the concatenation of the resulting increments forms a closed path based at the origin.

2.3. Mathematical Framework
In this subsection we introduce the mathematical framework that we work in throughout this article. Given an
arbitrary set M we define the collection of streams in M to be the set

S(M) :=

∞⋃
k=1

Mk =

∞⋃
k=1

{
(x1, . . . , xk) | x1, . . . , xk ∈ M

}
. (2.4)

Throughout this article we will consider streams in the setting that the set M is a real Banach space (complete
normed linear vector space) that we denote by W . Moreover, we will assume that this Banach space W is
finite dimensional with dimension d ∈ Z≥1.

We consider the following regression problem. Suppose that M ∈ Z≥1 is finite and we have a collection
of pairs

{
( xi, yi)

}M
i=1

where, for each i ∈ {1, . . . ,M}, xi ∈ S(W ) and yi ∈ R. The underlying idea is
that for each i ∈ {1, . . . ,M} the value yi ∈ R represents the underlying systems response to the stream xi.
Suppose we have a subset M ⊂ S(W ) such that { x1, . . . , xM} ⊂ M. Then we can consider the task of
transitioning from the collection of pairs

{
( xi, yi)

}M
i=1

to a continuous function f : M → R that accurately
reflects the known responses of the system to the inputs x1, . . . , xM and is capable of predicting the response
to new inputs.

Making sense of a continuous function f : M → R requires a topology on M. One particular way to
equip M with a topology is to choose a topology for S(W ) and then have M inherit this topology as a subset.
There are, of course, several different ways this could be done. As an example, we could define a norm on
S(W ) as follows. If k ∈ Z≥1 and x = (x1, . . . , xk) ∈ S(W ) then its norm is

|| x||S(W ) :=

k∑
j=1

||xj ||W . (2.5)

This choice corresponds to using the l1(W ) norm on the space of streams S(W ), observing that any element
x ∈ S(W ) can be viewed as an element in l1(W ) whose entries are all eventually 0. Making an appropriate

choice of norm for S(W ) is a modelling problem. There is no choice that will always be the most sensible.
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Which choice of norm is most suitable will depend on the particular problem.
We approach this regression problem by first transforming each of the streams x1, . . . , xM ∈ S(W )

to a stream of increments using the transformation informally introduced at the end of Subsection 2.2. We
first formalise this transformation. Consider a basis e1, . . . , ed ∈ W for W . Suppose k ∈ Z≥1 and let
x = (x1, . . . , xk) ∈ S(W ) be a stream such that, for each j ∈ {1, . . . , k}, we have

xj =

d∑
l=1

xj,lel (2.6)

for real coefficients xj,1, . . . , xj,d ∈ R. If we let the jth row correspond to the coefficient of the basis element
ej , we can represent the stream x as

x =


x1,1...
x1,d

 , . . . ,

xk,1...
xk,d


 . (2.7)

Then we apply the transformation introduced at the end of Subsection 2.2 to each channel in (2.7). That is, we
transform the stream x as represented in (2.7) to the new stream

x′ :=




x1,1
0
...

x1,d
0

 ,


0

−a1,1
...
0

−a1,d

 ,


x2,1 − x1,1
a2,1 − a1,1

...
x2,d − x1,d
a2,d − a1,d

 , . . . ,


xk,1 − xk−1,1

ak,1 − ak−1,1

...
xk,d − xk−1,d

ak,d − ak−1,d

 ,


0

−ak,1
...
0

−ak,d

 ,


−xk,1
0
...

−xk,d
0




. (2.8)

For every i ∈ {1, . . . , k} and j ∈ {1, . . . , d} the real number ai,j ∈ {0, 1} records whether the recorded
value xi,j ∈ R is the result of a new measurement or not. We have ai,j = 1 if xi,j is the result of a new
measurement, and ai,j = 0 otherwise. If this information is unknown or not available, then the default value
is to take ai,j = 1. That is, unless told otherwise we assume that each entry xi,j is the result of a new
measurement.

The values of the first and last entries of the original stream x are encoded in the first and last entries of the
new stream x′ respectively. The particular importance of the first and last values of a stream are emphasised
by this explicit encoding. In fact, the value of any entry of the original stream x is recoverable from the
new stream x′. Moreover, if two streams x1 and x2 are distinct, then the new streams x′

1 and x′
2, resulting

from the application of this transformation to x1 and x2 respectively, remain distinct. No information is lost
under this transformation. Consequently this transformation of a stream to a stream of increments satisfies the
wishlist of properties discussed in Subsection 2.2.

It is seen from (2.8) that the stream x′ is an element in S(W × Rd). Let V := W × Rd and replace
each of the streams x1, . . . , xM ∈ S(W ) by the stream of increments in S(V ) resulting from applying the
transformation determined by (2.8). Making a slight abuse of notation, we continue to denote the resulting
streams of increments in S(V ) by x1, . . . , xM ∈ S(V ). Replace each stream x in the subset M ⊂ S(V ) by
the stream resulting from applying the transformation determined in (2.8) to x. Again we abuse notation and
continue to denote the resulting subset of S(V ) by M. That is, we now have M ⊂ S(V ).

We now consider the following regression problem. We have a finite collection of pairs Ω =
{
( xi, yi)

}M
i=1

where, for each i ∈ {1, . . . ,M}, xi is a stream of increments in V and yi ∈ R represents the underlying sys-
tems response to the stream xi. We adopt the convention that Ω is a labelled dataset. We denote by ΩS(V )

the projection of Ω to S(V ), that is ΩS(V ) := { xi | i ∈ {1, . . . ,M}} ⊂ S(V ). We adopt the convention
that ΩS(V ) is a dataset. Observe that ΩS(V ) ⊂ M ⊂ S(V ). We consider the task of transitioning from the
collection of pairs Ω to a continuous function f : M → R that accurately reflects the known response of the
system to the inputs x1, . . . , xM , and is capable of predicting the response to new inputs x ∈ S(V ) that do
not correspond to an instance within ΩS(V ).

Once again making sense of a continuous function f : M → R requires a choice of topology on M.

10
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This can again be achieved by equipping S(V ) with a topology and letting M inherit the subspace topology.
There are, of course, numerous possible ways to equip S(V ) with a topology. As an example, we could
first choose a norm N for Rd. Then we could define a norm ||·||V on V = W × Rd by defining ||v||V :=
||PW (v)||W +N(Pd(v)) for v ∈ V where PW : V → W and Pd : V → Rd denote the respective projection
maps. Then we could subsequently define a norm on S(V ) as done for S(W ) in (2.5). That is, if k ∈ Z≥1 and
x = (x1, . . . , xk) ∈ S(V ) then its norm is

|| x||S(V ) :=

k∑
j=1

||xj ||V . (2.9)

Making an appropriate choice of norm for S(V ) is again a modelling problem. There is no choice that will
always be the most sensible. Which choice of norm is most suitable will depend on the particular problem.

In this formulation, we implicitly assume that the dataset ΩS(V ) gives a “good approximation” (in some
sense) of the subset M. That is, we assume it is reasonable to try and learn the systems response to inputs in
M using only its responses to inputs in ΩS(V ). This restriction is natural within learning tasks.

We would not expect a house value predictor learnt from rural house data to work well on houses in
all locations. Nor would we expect a reaction time predictor learnt from professional racing drivers to do a
good job at predicting the reaction time of members of the general public. And it is unlikely that knowing the
reaction of mice to a drug would allow the accurate prediction of the reaction of all animals to the drug.

The issue with all these examples is the presence of elements in M baring little resemblance to any
element in ΩS(V ). There are inner-city houses with very little similarity to rural houses, there are members
of the general population sharing few similar characteristics with professional racing drivers, and there are
animals whose biological make-up is significantly different from that of mice. It is not reasonable to expect to
accurately predict a systems response to inputs baring little resemblance to the inputs for which the response
is known.

It is easy to imagine several ad-hoc methods of ensuring that every element in M is somehow similar
to an element in ΩS(V ). But introducing a mathematical framework capable of describing similarity is more
challenging. We will later discuss a rigorous notion of similarity (cf. Section 14). But for now, we just assume
that M ⊂ S(V ) is a given subset and that our dataset ΩS(V ) provides a ”sufficiently good” approximation of
M, without concerning ourselves with the precise details meant by ”sufficiently good”.

2.4. Simple Regression Approach
We illustrate a basic approach to the regression problem outlined in Subsection 2.3, and highlight some of the
key theoretical properties required for this approach to be successful. We will later present an approach to this
regression task through the use of signatures, and validate that the required theoretical properties are satisfied
(cf. Subsection 2.6 and Section 3). For examples of working regression into machine learning pipelines
see [Géron, 2022] or [Raschka et al., 2022].

A core idea in many schemes for learning a function f from a collection of pairs Ω is to mimic the use
of the monomials in the basic example presented in Subsection 2.1. That it, first identify basic functions or
features that are readily evaluated at each point in ΩS(V ). This role is played by the monomials on the unit
interval [0, 1] ⊂ R in Subsection 2.1. Once a collection of basic functions has been identified, we try to express
the observed function as a linear combination of these basic functions.

One approach to finding a suitable collection of feature functions is to identify a universal feature map Ψ.
That is, to find an embedding Ψ : M →W for a Banach space W for which

Ψ(M)∗ = C0
(
Ψ(V )

)
(2.10)

where the closure is taken with respect to the uniform C0-norm on W . That is, we take the closure of Ψ(M)∗

in C0(W ;R) where C0(W ;R) is equipped with the norm ||A||C0(W ;R) := supw∈W

{
|A(w)|

}
.

A universal feature map Ψ provides a representation of the dataset ΩS(V ) as a subset ΩW := Ψ
(
ΩS(V )

)
of

a Banach space W in which continuous functions can be approximated by linear functions. That is, assuming
(2.10) is valid, if F ∈ C0

(
Ψ(M)

)
then given any ε > 0 there exists a linear functional σ : ΩW → R such

11
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that for every w ∈ ΩW we have |F (w) − σ(w)| ≤ ε. This would allow us to use linear functions as our
feature functions. Before mimicking the approach of approximating a continuous function on the interval [0, 1]
described in Subsection 2.1, we need to understand how to evaluate ϕ( xi) for elements ϕ ∈ Ψ(M)∗ and i ∈ I.

We seek a suitable universal embedding of the set M into some Banach space W . If we simultaneously
found an embedding of M into the dual space W ∗, then we would have many of the properties of what the
machine learning literature refers to as a kernel. To be more precise, a pair of embeddings

Ψ : M →W and Φ : M →W ∗ (2.11)

would allow us to define a function K : M×M → R by setting

K(x, y) :=
〈
Φ(x),Ψ(y)

〉
(2.12)

where
〈
·, ·
〉
: W ∗ ×W → R denotes the natural dual-pairing map. That is, given ϕ ∈ W ∗ and v ∈ W we

define
〈
ϕ, v
〉
:= ϕ(v).

If W is a Hilbert space, in which case its dual W ∗ is isometric to itself and the natural dual-pairing map
is simply the inner product on W , then the function K defined in (2.12) is a kernel. In this setting the kernel
K generates what is called a Reproducing Kernel Hilbert Space (RKHS), denoted by HK , that is a subset of
the continuous functions M → R, i.e. HK ⊂ C0(M;R). Originally developed by Aronszajn in [Aronszajn,
1950], numerous recent works provide detailed exposition of this topic. Two particular examples are the
introductions provided in [Manton et al., 2015] and [Paulsen and Raghupathi, 2016]. We provide a brief
outline of the construction of HK , and direct the reader to either of [Manton et al., 2015] or [Paulsen and
Raghupathi, 2016] for full details. The RKHS HK can be constructed as follows.

• Define H0 := Span
({
Kz | z ∈ M

})
where, for z ∈ M, the function Kz : M → R is defined by

Kz(v) := K(z, v) for v ∈ M.

• For v, z ∈ M define
〈
Kz,Kv

〉
H0

:= K(z, v) and subsequently bilinearly extend
〈
·, ·
〉
H0

to the entirety
of H0.

• Prove that
(
H0,

〈
·, ·
〉
H0

)
is an inner product space and that if f ∈ H0 and v ∈ M then f(v) =〈

f,Kv

〉
H0

.

• Let HK be the collection of functions f : M → R for which there exists a H0-Cauchy sequence{
fn
}∞
n=1

⊂ H0 such that fn → f pointwise as n→ ∞.

• Show that
〈
f, g
〉
HK

:= limn→∞
〈
fn, gn

〉
H0

for H0-Cauchy sequences
{
fn
}∞
n=1

,
{
gn
}∞
n=1

⊂ H0 con-
verging pointwise to f and g respectively is a well-defined inner product on HK .

• Prove that HK is complete with respect to this inner product, i.e. that
(
HK ,

〈
·, ·
〉
HK

)
is a Hilbert space.

Moreover, it follows that if f ∈ Hk and v ∈ M then f(v) =
〈
f,Kv

〉
Hk

.

The property that for f ∈ HK and v ∈ M we have f(v) =
〈
f,Kv

〉
HK

is sometimes called the reproducing
property. It is worth mentioning that this outlined strategy works under weaker assumptions for the kernel
K : M×M → R. Indeed it is only required that the kernel be symmetric in the sense that for every v, u ∈ M
we have K(u, v) = K(v, u), and positive definite in the sense that for every positive integer n ∈ Z≥1 and any
v1, . . . , vn ∈ M and a1, . . . , an ∈ R that

∑n
i=1

∑n
j=1 aiajK(vi, vj) ≥ 0. Both these properties are evidently

satisfied when K is given by a real inner product on a real vector space.
Returning to the setting in which we have embeddings as outlined in (2.11) and the resulting function K

defined in (2.12), we observe that we now have a concrete approach to the learning problem. Recall we have a
labelled dataset Ω =

{
( xi, yi) | i ∈ {1, . . . ,M}

}
⊂ S(V ) × R. We could use the functions K xi ∈ HK for

i ∈ {1, . . . ,M} as the feature functions. That is, first solve the system

yi =

M∑
k=1

akK xk( xi) (2.13)

12



2.5 Streams of Increments as Paths Terry Lyons & Andrew D. McLeod

for each i ∈ {1, . . . ,M}, and then express the observed function f as

f(·) :=
M∑
k=1

akK xk(·). (2.14)

WhenW is a Hilbert space the so-called Representer Theorem, established in [Schölkopf et al., 2001], provides
theoretical guarantees regarding the solvability of the equations in (2.13) via gradient descent with respect to
a suitable cost function, possibly involving a regularisation term, see [Schölkopf et al., 2001] for full details.
However, the equations determined in (2.13) clearly do not require W to be a Hilbert space, and the outlined
approach still makes sense under the weaker assumption that W is only a Banach space.

Of course in this setting the functionK defined in (2.12) fails to be a kernel in the machine learning sense;
indeed it need not be either symmetric of positive definite. Consequently one cannot invoke the Representer
Theorem established in [Schölkopf et al., 2001] to provide theoretical guarantees regarding the use of cost
function based gradient descent to solve the system of equations (2.13). However, it is in fact known that the
Representer Theorem remains valid for certain types of Banach spaces; see [Schlegel, 2021]. Hence there are
settings in which just having the assumption of a pair of embeddings, one into a Banach space W and the other
into its dual W ∗, rather than an embedding into a Hilbert space remains sufficient to provide the theoretical
guarantees of the Representer theorem.

A major benefit of the kernel approach outlined above is that neither the dimension of W or the explicit
form of the embeddings Ψ and Φ are involved. The strategy only involves a finite number of terms, namely
the M2 numbers K(xi, xj), which is independent of the dimension of W . Assuming K is known, comput-
ing these M2 numbers does not require computing the embedded data points Φ( xi) and Ψ( xi) themselves.
Consequently there is no restriction on the embeddings that may be considered, with embeddings into infinite
dimensional Hilbert spaces W being allowed both theoretically and in practice. But the number of computa-
tions does grow quadratically with respect to the size of the dataset ΩS(V ), which becomes problematic for
large datasets ΩS(V ).

Unlike the motivating example of using monomials as the feature functions (cf. Subsection 2.1), there
is no natural notion of ordering on the set

{
K xi | i ∈ I

}
. For the monomials on [0, 1], namely the set{

ϕk : [0, 1] → R, ϕk(x) := xk | k ∈ Z≥0

}
, then there is the grading given by the order of the monomials.

There is an intrinsic idea that the higher the order the more costly it is to use, and thus it is somehow preferable
to use lower order monomials rather than ones of higher order; i.e. using ϕ2 in place of ϕ10 would be less costly.
A priori there is no such intrinsic grading on the set of functions

{
K xi | i ∈ {1, . . . ,M}

}
. Given distinct

i, j ∈ {1, . . . ,M}, it is not clear whether there is any benefit between using K xi or K xj to approximate a
function.

2.5. Streams of Increments as Paths
A stream of increments determines a system whose state evolves over time. It may be viewed as a map
from an ordered state space to the Banach space V , and concatenating the increments provides an intrinsic
way of embedding the stream within a continuous path γ : I → V for some compact interval I ⊂ R.
Having obtained our streams of increments via the transformation detailed in Subsections 2.2 and 2.3, the
continuous path resulting from the concatenation of the entries will be a closed loop based at the origin 0 ∈ V .
This interpolation of a stream of increments is, in some sense, less ad-hoc than the variety of interpolation
schemes that can be applied to a stream of values. Examples of several explicit choices of such interpolation
schemes, including linear interpolation, rectilinear interpolation, and cubic spline interpolation, can be found
in [Chevyrev and Kormilitzin, 2016].

The concatenation of the increments contained within a stream of increments determines an unparam-
eterised path in V ; sometimes also referred to as a shape or a contour. Each entry tells us how the system
evolves; but the time over which this evolution happens is determined via a choice of how to view contour.
This choice should not influence the affect of the system. Our choice of how to view the contour should not
affect the systems response to the contour. We will summarise the effects of a stream of increments by using
the signature to succinctly capture the effects of the contour resulting from the concatenation of the entries in
the stream.
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It is worth remarking that streams of increments can be augmented in the same way that streams of values
often are. Typically, supposing that x = (x1, . . . , xk) ∈ V k for some k ∈ Z≥1, one considers a fixed
map Θ : V → W for some Banach space W , and subsequently uses Θ to transform x to the augmented
stream Θ( x) :=

(
Θ(x1), . . . ,Θ(xk)

)
∈ W k. The underlying idea is that the augmentation makes it easier

to summarise the resulting stream, possibly by explicitly introducing a characteristic that is desirable for the
particular model. Evidently the choice of augmentation to use is a modelling problem; it will depend upon the
specific task one is aiming to solve.

Once the dataset ΩS(V ) is augmented by Θ to a dataset ΩS(W ) :=
{
Θ( x) | x ∈ ΩS(V )

}
⊂ S(W ),

one can consider the regression problem of transitioning from the pairs
{
(Θ( xi), yi) | i ∈ {1, . . . ,M}

}
to a

continuous function h : Θ(M) → R. Then the original desired continuous function f : M → R would be
given by f := h ◦Θ.

We end this section by explicitly introducing some of the more commonly used augmentations as maps
S(V ) → S(W ) for a choice of Banach space W that is specific to each augmentation.

The Lead-Lag augmentation is the map TLead-Lag : S(V ) → S(V × V ) defined by

TLead-Lag(v1, . . . , vk) :=
(
(v1, v1), (v2, v1), (v2, v2), . . . , (vj , vj), (vj+1, vj), . . . , (vk, vk)

)
. (2.15)

It takes a stream with k entries to a stream with 2k entries, whilst splitting the original stream into two copies,
labelled the future and the past. There is a delay between when the future is updated and when the past is
subsequently updated. The number of steps between the future being updated and the past being updated can
be varied. Further, more than one past stream can be recorded, with each past stream having a different number
of delay steps between when the future stream is updated and when it is itself updated.

For the purpose of an explicit illustration of the Lead-Lag augmentation, take V := R and consider the
stream ΩL := {1, 6, 3, 9, 5}. The basic Lead-Lag augmentation defined in (2.15) would map this stream to the
stream {

(1, 1), (6, 1), (6, 6), (3, 6), (3, 3), (9, 3), (9, 9), (5, 9), (5, 5)
}
∈ S

(
R2
)
.

If the delay is increased to 2 steps, then we get the stream{
(1, 1), (6, 1), (3, 1), (3, 6), (9, 6), (5, 6), (5, 3), (0, 3), (0, 3), (0, 9), (0, 9), (0, 9), (0, 5)

}
∈ S

(
R2
)
.

We could record both the one-step delayed past and the two-step delayed path in a single augmentation. This
would map ΩL to the stream
1
1
1

 ,

6
1
1

 ,

6
6
1

 ,

6
6
6

 ,

3
6
6

 ,

3
3
6

 ,

3
3
3

 ,

9
3
3

 ,

9
9
3

 ,

9
9
9

 ,

5
9
9

 ,

5
5
9

 ,

5
5
5

 ∈ S
(
R3
)
.

The final variant of this transformation we mention involves not pausing the future stream whilst the past
streams are updated. If d past streams are being recorded, then the no future pause augmentation maps a
stream (v1, . . . , vk) ∈ S(V ) to the stream



v1
0
0
...
0
0


,



v2
v1
0
...
0
0


, . . .



vd+1

vd
vd−1

...
v2
v1


,



vd+2

vd+1

vd
...
v3
v2


, . . .



vk
vk−1

vk−2

...
vk−d+1

vk−d


,



0
vk
vk−1

...
vk−d+2

vk−d+1


, . . .



0
0
0
...
vk
vk−1


,



0
0
0
...
0
vk




(2.16)

in S
(
V d+1

)
. Returning to the dataset ΩL, applying the no future pause augmentation defined in (2.16) with

d = 2 results in the new stream
1
0
0

 ,

6
1
0

 ,

3
6
1

 ,

9
3
6

 ,

5
9
3

 ,

0
5
9

 ,

0
0
5

 ∈ S
(
R3
)
.
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Lead-Lag type transformations are frequently used in financial markets modelling since they can encode the
modelling assumption that no strategy should be able to use the present time stock value. Strategies are only
allowed to use the past streams of the augmented dataset. Since the future stream is always updated first, with
there being a definite delay before any of the past streams are subsequently updated, the strategies are prevented
from making use of the present time stock values.

Another common augmentation is the Time augmentation TTime : S(V ) → S(V × R) defined by

TTime

(
(v1, . . . , vk)

)
:=
(
(v1, t0), . . . , (vj , tj), . . . , (vk, tk)

)
(2.17)

for a strictly increasing sequence of times 0 ≤ t1 < t2 < . . . < tk, ensuring the resulting path has a strictly
monotonic component. A variant of this is the Time-difference augmentation TTime-diff : S(V ) → S(V × R)
defined by

TTime-diff

(
(v1, . . . , vk)

)
:=
(
(v1, t0), . . . , (vj , tj − tj−1), . . . , (vk, tk − tk−1)

)
(2.18)

for a strictly increasing sequence of times 0 ≤ t1 < t2 < . . . < tk. Both the Time and Time-diff augmentations
take streams consisting of k entries to streams once again consisting of k entries.

To illustrate these augmentations, consider the stream ΩT := {1, 5, 2, 9, 7, 6} ∈ S(R) and the strictly
increasing sequence 0, 1, 3, 6, 8, 12. Then

TTime

(
ΩT

)
=
{
(1, 0), (5, 1), (2, 3), (9, 6), (7, 8), (6, 12)

}
∈ S

(
R2
)

(2.19)

and
TTime-diff

(
ΩT

)
=
{
(1, 0), (5, 1), (2, 2), (9, 3), (7, 2), (6, 4)

}
∈ S

(
R2
)
. (2.20)

The final augmentation we mention is the Invisibility Reset augmentation Tinv : S(V ) → S(V × R) defined
by

Tinv(v1, . . . , vk) :=
(
(v1, 1), . . . , (vj , 1), . . . , (vk, 1), (vk, 0), (0, 0)

)
(2.21)

and taking streams with k entries to streams with k + 2 entries. We illustrate this augmentation by applying
it to both the one-dimensional stream Ωir1 := {1, 3, 4, 8, 9} in S(R) and the two-dimensional stream Ωir2 :=
{(1, 2), (3, 4), (4, 6), (5, 9), (7, 10)} in S

(
R2
)
. This yields

Tinv
(
Ωir1

)
=
{
(1, 1), (3, 1), (4, 1), (8, 1), (9, 1), (9, 0), (0, 0)

}
∈ S

(
R2
)

(2.22)

and

Tinv
(
Ωir2

)
=


1
2
1

 ,

3
4
1

 ,

4
6
1

 ,

5
9
1

 ,

 7
10
1

 ,

 7
10
0

 ,

0
0
0

 ∈ S
(
R3
)
. (2.23)

This augmentation is utilised in the transformation for converting a stream of values to a stream of increments
that is detailed in Subsection 2.3. A particular consequence of this is that the signature of the resulting stream
of increments will capture information related to the norm/size of the entries in the original stream of values
(cf. Section 3).

2.6. Signature Involvement
The finite dataset ΩS(V ) is a subset of the set of streams on V denoted by S(V ). Thus given a stream x ∈
S(V ), we seek to summarise x (throw away irrelevant information) so as to capture its effect. Recalling
our assumption that the streams we consider are formed of incremental data, we observe that each stream
can be associated with the contour/shape determined by the concatenation of the increments. Given a stream
of increments x ∈ S(V ) we denote the contour arising as the concatenation of the increments as Γ x. The
approach followed in this article is to summarise a stream of increments x ∈ S(V ) by summarising the
contour Γ x.

It is instructive to realise that the classical mathematical description of paths is ill-suited to providing
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such a summary. Assume that we have a parameterisation γ : I → V of the contour Γ x where I ⊂ R is a
compact interval. Then the classical description of the path γ fails to adequately compress the information it
contains. The classical description requires precisely recording the position of the path at every instance. Even
the probabilistic Kolmogorov approach (in which one considers fixed times ti, open sets Oi, and considers
the probability that, for all i, at time ti the path is within the set Oi) still places emphasis on the location at a
specified time.

The limitations in using this approach to summarise paths become clear from considering some examples.
We would not try to summarise a movie by recording a second-by-second account, we would not describe a
football match by providing the exact position of the ball at each second and we would not describe a drawing
by providing a second-by-second account of the location of the pencil tip. The problem is that we are not
throwing away any irrelevant information, making the extraction of the useful information very challenging.

Recording only the major events of a path rather than all the events may seem like a solution that could
be achieved via sampling; however this still run into problems. The issue is that the order in which the major
events occur is frequently at least as important as the major events themselves. For example, it could be critical
from a diagnostic perspective to know whether a patients heart rate or their breathing rate increased first. The
gap between the two events may be very small, meaning that a very high frequency sampling rate of both the
pulse and the breathing rate is required to capture their order. But without a priori knowledge of when the first
drop occurs we have to sample the entirety of both streams, resulting in a large amount of irrelevant information
being recorded. This problem is amplified as the number of events n ≥ 2 whose order we are interested in
increases. We want a summary of the main events and the order in which they happen that is detailed enough
to distinguish between different paths whilst still discarding irrelevant information.

We want to summarise the contour Γ x associated to the stream of increments x. The contour Γ x is
independent of the choice of parameterisation we make to view it. This reflects the fact that the response of a
system to a given stream x is not affected by the speed at which the provided sequential increments happen.
The features of the stream induce the same response regardless of how quickly we choose to experience them.
For example, consider writing the character ‘3’. The effect of this stream is a figure ‘3’ drawn on our piece of
paper, and obviously this effect remains the same irrespective of how quickly we draw it. Two 3’s drawn with
different speeds are still both a ‘3’; the change of speed with which we view the stream given by ‘writing a
figure 3’ does not change its effect in producing a ‘3’ on our page.

Consequently, if we want to summarise Γ x by summarising a parameterisation γ : I → V of Γ x defined
on a compact interval I ⊂ R, we must summarise γ in a manner that is invariant under reparameterisation.
That is, we must quotient out the symmetry induced by the group of reparameterisations so that the resulting
summary of the contour Γ x depends only on the contour Γ x and not on any particular choices made for the
purposes of viewing it. The information extracted from the contour Γ x should not depend on how we choose
to access Γ x.

The freedom of reparameterisation makes embedding a stream into a continuous path a reasonable idea.
Each increment in a stream x represents a change in the state of the system. Initially these changes appear
to happen instantaneously, seemingly giving rise to a discontinuous path. Hence it appears that the contour
Γ x arising from the concatenation of these changes in a continuous manner is not a good representation of the
stream x.

However, under the assumption that reparameterisation does not affect the underlying system, we can
imagine slowing the speed down and introducing new virtual time over which the next change to the system
happens. By sufficiently slowing the speed, we can imagine that the seemingly instantaneous, with respect to
the original time, affect of the next instance becomes a continuous change with respect to the new virtual time.

Recalling our machine learning motivations, after associating each stream xi ∈ ΩS(V ) with its corre-
sponding contour Γ xi , our problem has been transformed to seeking to learn a function that is an effect of
these unparameterised path. A consequence of rough path theory is that the signature provides a summary of
the paths affect on systems that satisfies our list of requirements. The signature of a path determines this path
in an essentially unique way and is invariant under reparameterisation of the path. This invariance allows the
signature to readily record the order in which events occur without recording precisely when they occur.

The signature of a path even provides a natural feature set of linear functionals capturing the aspects of
the data necessary to predict the effects of the path on systems. The signature of a path γ is the response of
the exponential nonlinear system to the path. In one dimension the response of the exponential linear system
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captures the monomials, in the sense that the power series of exp : R → R is given by

exp(x) =

∞∑
k=0

xk

k!
. (2.24)

The projection onto the mth degree term gives the mth degree monomial. Thus, at least heuristically, we see
why we expect the signature to be a suitable feature map. In Section 3, we provide some of the details justifying
these assertions. But first we must introduce the space upon which the signature will live.

2.7. Tensor Algebra and Signature
Let V be a d-dimensional Banach space. The spaces of formal polynomials and formal power series over V
are given by

T (V ) :=

∞⊕
k=0

V ⊗k and T ((V )) :=

∞∏
k=0

V ⊗k (2.25)

respectively where V ⊗0 := R. Both addition, scalar multiplication, and the tensor product ⊗ extend to T ((V ))
as follows. Suppose that A =

∏∞
k=0 ak ∈ T ((V )), B =

∏∞
k=0 bk ∈ T ((V )), and λ ∈ R. Then we define the

operations

A+B :=

∞∏
k=0

ak + bk and A⊗B :=

∞∏
n=0

n∑
k=0

ak ⊗ bn−k (2.26)

and recall the natural action of R on T ((V )) given by

λA :=

∞∏
k=0

λak. (2.27)

The operations defined in (2.26) and the action of R specified in (2.27) also make sense for elements in T (V ).
When equipped with the operations in (2.26) and the action of R defined in (2.27) T ((V )) becomes a

real, non-commutative unital algebra, with unit 1 = (1, 0, 0, . . .), called the Tensor algebra of V . It is within
the tensor algebra that the signature of a path x : [a, b] → V lives. Before detailing this, we first consider
equipping T ((V )) with a norm.

For convenience, for each n ∈ Z≥0, let πn : T ((V )) → V ⊗n denote the projection map. Moreover, for
each n ∈ Z≥0, we may consider the truncated tensor algebra

T (n)(V ) :=

n∏
k=0

V ⊗k (2.28)

and denote the projection T ((V )) → T (n)(V ) by Πn. One particular way to equip the tensor algebra T ((V ))
with a norm would be to choose admissible tensor norms, in the sense originating in [Schatten, 1985], for all
the tensor powers of V . For clarity, we give a precise definition below.

Definition 2.1 (Admissible Tensor Norms). Let V be a Banach space. The tensor powers of V are equipped
with admissible norms if for each integer n ∈ Z≥1 we have chosen a norm on V ⊗n such that the following
conditions are satisfied.

(A) For each n ∈ Z≥1 the norm ||·||V ⊗n on V ⊗n is invariant under the action of the symmetric group Sn on
V ⊗n. To elaborate, given ρ ∈ Sn and a1⊗ . . .⊗an ∈ V ⊗n, then ρ(a1⊗ . . .⊗an) := aρ(1)⊗ . . .⊗aρ(n),
and the action is extended to the entirety of V ⊗n by linearity. Then it is required that for every v ∈ V ⊗n

and every ρ ∈ Sn we have ||ρ(v)||V ⊗n = ||v||V ⊗n .

(B) For any n,m ∈ Z≥1 and any v ∈ V ⊗n and w ∈ V ⊗m we have ||v ⊗ w||V ⊗(n+m) ≤ ||v||V ⊗n ||w||V ⊗m .
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(C) For any integers n,m ∈ Z≥1 and for any dual elements ϕ ∈
(
V ⊗n

)∗
and σ ∈

(
V ⊗m

)∗
we have

||ϕ⊗σ||(
V ⊗(n+m)

)∗ ≤ ||ϕ||(
V ⊗n

)∗ ||σ||(
V ⊗m

)∗ . Here, given any k ∈ Z≥1, the norm ||·||(V ⊗k)∗ denotes

the dual-norm induced by ||·||V ⊗k .

It turns out (see [Ryan, 2002]) that having both the inequalities stated in Definition 2.1 (B) and (C) respectively
ensures that we in fact have equality in both estimates. Hence if the tensor powers of V are equipped with
admissible norms, we have equality in both the inequalities stated in Definition 2.1 (B) and (C) respectively.

Two common choices are the projective and injective tensor norms. The projective tensor norm is defined,
for n ≥ 2, on V ⊗n by setting, for v ∈ V ⊗n,

||v||proj,n := inf

{ ∞∑
i=1

n∏
j=1

||aji ||V

∣∣∣∣∣ v =

∞∑
i=1

a1i ⊗ . . .⊗ ani and
∞∑
i=1

n∏
j=1

||aji ||V <∞

}
. (2.29)

The injective tensor norm is defined, for n ≥ 2, on V ⊗n by setting, for v ∈ V ⊗n,

||v||inj,n := sup
{
|φ1 ⊗ . . .⊗ φn(v)| | φ1, . . . , φn ∈ V ∗ and ||φ1||V ∗ = . . . = ||φn||V ∗ = 1

}
. (2.30)

As observed in [Schatten, 1985]. the injective and projective tensor norms are the prototype examples of
admissible tensor norms in the following sense. Given any arbitrary choice of admissible tensor norms on the
tensor powers of V in the sense of Definition 2.1, then for every n ∈ Z≥2, if ||·||V ⊗n denotes the norm chosen
for V ⊗n, we have for every v ∈ V ⊗n that (cf. Proposition 2.1 in [Ryan, 2002])

||v||inj,n ≤ ||v||V ⊗n ≤ ||v||proj,n. (2.31)

Any choice of admissible tensor norms for the tensor powers of V could be used to define a norm on the tensor
algebra T ((V )). For example, we could define

||v||T ((V )) :=

∞∑
n=0

||πn(v)||V ⊗n (2.32)

for v ∈ T ((V )) with the choice of the norm on V ⊗0 = R as the usual absolute value.
For separable real Banach spaces V it is known that one may define an inner product on V so that the

Hilbert space resulting from the completion of V with respect to this inner product is closely related to the
original Banach space structure on V ; see [Kuelbs, 1970]. In the case that V is finite dimensional, as we are
assuming, this can be achieved in the following way. We begin by letting B = {v1, . . . , vd} be a basis for V ,
and subsequently denote the induced dual basis of V ∗ by B∗ = {v∗1 , . . . , v∗d}. For each n ∈ Z≥2 the basis B
determines the basis

B⊗n :=
{
v K = vk1

⊗ . . .⊗ vkn
| K = (k1, . . . , kn) ∈ {1, . . . , d}n

}
(2.33)

for V ⊗n and the corresponding dual basis(
B∗)⊗n

:=
{
v∗K = v∗k1

⊗ . . .⊗ v∗kn
| K = (k1, . . . , kn) ∈ {1, . . . , d}n

}
(2.34)

for
(
V ∗)⊗n

.
We first use the basis B to define an inner product on V . To do so we set

〈
vi, vj

〉
V
:= δij =

{
1 if i = j
0 if i ̸= j

(2.35)

and extending bilinearly to the whole of V . Given any n ∈ Z≥2 we use the basis B⊗n to define an inner
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product on V ⊗n. We set

〈
vi1 ⊗ . . .⊗ vin , vj1 ⊗ . . .⊗ vjn

〉
V ⊗n :=

n∏
k=1

〈
vik , vjk

〉
V
= δi1j1 . . . δinjn (2.36)

and again extending bilinearly to the whole of V ⊗n. Finally, we define an inner product on the tensor algebra
T ((V )) by setting 〈

A,B
〉
T ((V ))

=

∞∑
n=0

〈
πn(A), πn(B)

〉
V ⊗n (2.37)

for A,B ∈ T ((V )) where we choose the inner product on V ⊗0 = R to be given by usual multiplication. Let
H(V ) := T ((V )) denote the Hilbert space given by the completion of the tensor algebra T ((V )) with respect
to this inner product. Throughout this article we assume that the tensor algebra T ((V )) has been equipped with
an inner product in this manner.

The choices of inner products on the tensor powers of V interact with the induced dual bases in the
expected way. To be more precise, first observe that for every n ∈ Z≥1 we have that

(
V ∗)⊗n

=
(
V ⊗n

)∗
.

Consequently, given n ∈ Z≥1, if K ∈ {1, . . . , d}n then the element v∗K ∈ B∗ ⊂
(
V ⊗n

)∗
is given by

v∗K(·) =
〈
·, v K

〉
V ⊗n .

Momentarily ignoring regularity issues, the signature of a continuous path x : [a, b] → V is the solution
to the universal differential equation

dSa,t(x) = Sa,t(x)⊗ dxt with Sa,a(x) = 1 = (1, 0, 0, . . . ) ∈ T ((V )), (2.38)

formalising that the signature S(x) is the response of the exponential nonlinear system to the input x. The
subsequent Subsections 2.8 and 2.9 are dedicated to examining the regularity issues related to the differential
equation defined in (2.38).

We end this subsection by defining certain subsets of the tensor algebra T ((V )) and particular operations
on elements within the tensor algebra T ((V )) that will be useful in the later subsections. First, we introduce
the notation that T̃ ((V )) will denote the collection of elements a ∈ T ((V )) for which π0( a) = 1 ∈ R, and
T>0((V )) will denote the collection of elements a ∈ T ((V )) for which π0( a) > 0.

By using the power series of the real-valued functions x 7→ ex and x 7→ log(1 + x), we define the
exponential exp and logarithm log of elements within the tensor algebra T ((V )).

Definition 2.2 (Exponential and Logarithm; Definition 2.20 in [Lyons et al., 2007]). The exponential map on
the tensor algebra T ((V )) is the map exp : T ((V )) → T̃ ((V )) is defined for a ∈ T ((V )) by

exp( a) :=
∞∑

n=0

a⊗n

n!
. (2.39)

The logarithm map log : T>0((V )) → T ((V )) is defined for a ∈ T>0((V )) by

log( a) := log(π0( a)) +
∞∑

n=1

(−1)n

n

(
1 − a

π0( a)

)⊗n

(2.40)

where we recall that π0 is the projection map T ((V )) → R =: V ⊗0.

The series defining the map exp in 2.39 is convergent (see Lemma 2.19 in [Lyons et al., 2007]). Further,
the series defining the map log in 2.40 is purely algebraic involving only finitely many terms at each level.
Consequently, it does not depend on the norms on the tensor powers of V . Moreover, if we let B1 denote the
collection of elements a ∈ T ((V )) with π0( a) = 0, then exp : B1 → T̃ ((V )) and log : T̃ ((V )) → B1 are
both one-to-one and the inverse of one and other; see Lemma 2.21 in [Lyons et al., 2007].

The tensor algebra T ((V )) carries a Lie bracket [·, ·] : T ((V )) × T ((V )) → T ((V )) defined for a, e ∈
T ((V )) by

[ a, e] := a ⊗ e − e ⊗ a. (2.41)
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Given linear subspaces F1, F2 ⊂ T ((V )) we define

[F1, F2] := Span
({

[ a, e] | a ∈ F1 and e ∈ F2

})
. (2.42)

Then we may define a sequence {Ln}∞n=0 of linear subspaces of T ((V )) recursively by

L0 := {0} ⊂ R =: V ⊗0, L1 := V and, for every n ∈ Z≥1 Ln+1 := [V,Ln] ⊂ V ⊗(n+1). (2.43)

For each n ∈ Z≥0 the subspace Ln ⊂ V ⊗n defined in (2.43) is called the space of homogeneous Lie polyno-
mials of degree n. The sequence {Ln}∞n=0 enables us to define the space of Lie formal series over V .

Definition 2.3 (Lie formal series over V ; Definition 2.22 in [Lyons et al., 2007]). The space of Lie formal
series over V is the subspace L((V )) ⊂ T ((V )) given by

L((V )) :=
{

l ∈ T ((V )) | for every n ∈ Z≥0 we have πn( l) ∈ Ln

}
. (2.44)

Moreover, for each n ∈ Z≥0 we define the Lie polynomials of degree n to be the subset L(n)(V ) :=
Πn

(
L((V ))

)
.

Finally we define the set of group-like elements in T̃ ((V )).

Definition 2.4 (Group-like elements). The group-like elements are those in the subset G(∗) ⊂ T̃ ((V )) defined
by

G(∗) := exp
(
L((V ))

)
. (2.45)

Further, for each integer n ∈ Z≥0, the free nilpotent group of order n is defined as G(n) := Πn

(
G(∗)

)
.

A particular consequence of (2.45) is that L((V )) = log
(
G(∗)

)
. Moreover, as the name suggests, the group-

like elements G(∗) form a group under the tensor product operation ⊗. We will later see that the signature of a
large class of paths lie within this group (cf. Subsections 2.8 and 2.9).

2.8. Signature of Paths with Finite p-Variation
In this subsection we cover the signature of a continuous path x : [a, b] → V having finite p-variation for some
p ∈ [1, 2). We begin by introducing the notion of p-variation regularity.

If p ∈ R≥1 then the p-variation of a continuous path x : [a, b] → V is defined to be

||x||p,[a,b] :=

(
sup

a≤t0<t1<...<tr≤b

{
r−1∑
j=0

∣∣∣∣xtj+1
− xtj

∣∣∣∣p
V

}) 1
p

. (2.46)

We denote the collection of continuous paths [a, b] → V with finite p-variation by Vp([a, b], V ). We can equip
Vp([a, b], V ) with a norm called the p-variation norm by defining, for x ∈ Vp([a, b], V ),

||x||Vp([a,b],V ) := ||x||p,[a,b] + sup
t∈[a,b]

{
||xt||V

}
. (2.47)

If p, q ∈ R≥1 with p ≤ q then V1([a, b], V ) ⊂ Vp([a, b], V ) ⊂ Vq([a, b], V ) ⊂ C0([a, b], V ) (see Proposition
1.7 in [Lyons et al., 2007], for example). Further, if α ∈ (0, 1] and y ∈ C0([a, b], V ) is α-Hölder continuous
in the sense that there exists a constant C > 0 such that ||yt − ys||V ≤ C|t − s|α whenever s, t ∈ [a, b], then
y has finite 1/α-variation, i.e. y ∈ V1/α([a, b], V ). Consequently, a typical Brownian path B : [a, b] → R
has finite p-variation for every p > 2, i.e. B ∈ Vp([a, b],R). It is however known that the 2-variation of B
is almost surely infinite [Freedman, 2012]. However, if we instead view the Brownian path as a path into L2

rather than R, then its 2-variation on [a, b] is finite; see [Lyons et al., 2007], for example.
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If a continuous path x : [a, b] → V is in Vp([a, b], V ) for a real number 1 ≤ p < 2 then its signature (i.e.
the solution to the differential equation (2.38)) can be constructed explicitly using the Young integral, which is
a continuous extension of the Stieltjes integral. Given Banach spaces V and W , the Young integral determines
a way for a path [a, b] → L(V,W ) to be integrated along a path [a, b] → V . The notation L(V,W ) denotes
the space of linear operators V → W . To be more precise, let X : [a, b] → V and Y : [a, b] → L(V,W ).
Given a partition D = (a = t0, t1, . . . , tr = b) of [a, b] we let |D| := min

{
ti+1 − ti | i ∈ {0, . . . , r − 1}

}
.

We first define ∫
D
Y dX :=

r−1∑
i=0

Ytr
[
Xtr+1

−Xtr

]
. (2.48)

Then, given t ∈ [a, b], the Young integral of Y along X over the interval [a, t] is defined as∫ t

a

YsdXs := lim
j→∞

∫
Dj

Y dX (2.49)

where
{
Dj

}∞
j=1

is a sequence of partitions of [a, t] with |Dj | → 0 as j → ∞. When p, q ∈ R≥1 with 1
p+

1
q > 1,

X ∈ Vp([a, b], V ), and Y ∈ Vq([a, b], L(V,W )) it can be established that the mapping t 7→
∫ t

a
YsdXs defined

in (2.49) is a well-defined path [a, b] →W with finite p-variation; see Theorem 1.16 in [Lyons et al., 2007].
Using the Young integral, if p ∈ [1, 2) and x ∈ Vp([a, b], V ), then the signature of x is given by the

iterated integrals of x. That is, Sa,t(x) =
∏∞

n=0 S
n
a,t(x) where

S0
a,t(x) ≡ 1 and, for n ∈ Z≥1, Sn

a,t(x) =

∫
· · ·
∫

a<t1<...<tn<t

dxt1 ⊗ . . .⊗ dxtn . (2.50)

The path t 7→ Sa,t(x) is the unique solution to the differential equation stated in (2.38) for the path x; see
Lemma 2.10 in [Lyons et al., 2007], for example.

There are estimates known for the norms of the components of the signature Sa,t(x), i.e. there are known
upper bounds for the quantities ||Sn

a,t(x)||V ⊗n . In order to state these estimates we introduce the notion of a
control on the interval [a, b]. First, we define ∆[a,b] :=

{
(s, t) | a ≤ s ≤ t ≤ b

}
. A control on [a, b] is a

continuous function ω : ∆[a,b] → R≥0 that is super-additive, in the sense that for every s, t, u ∈ [a, b] with
s ≤ u ≤ t we have ω(s, u) + ω(u, t) ≤ ω(s, t), and vanishes on the diagonal, in the sense that for every
t ∈ [a, b] we have ω(t, t) = 0.

Raising the p-variation of a path x to the power of p provides an example of a control. That is, the function
ωx : ∆[a,b] → R≥0 defined for (s, t) ∈ ∆[a,b] by ωx(s, t) := ||x||pp,[s,t] is a control. Given a general control
ω : ∆[a,b] → R≥0, the p-variation of a path x : [a, b] → V is controlled by ω if for every (s, t) ∈ ∆[a,b] we
have ||x||p,[a,b] ≤ ω(s, t)1/p.

Now suppose that p ∈ [1, 2) and that x ∈ Vp([a, b], V ). Then there exists a control ω : ∆[a,b] → R≥0

such that for every n ∈ Z≥1 and every (s, t) ∈ ∆[a,b] we have

∣∣∣∣Sn
s,t(x)

∣∣∣∣
V ⊗n ≤ ω(s, t)n

Γ
(
1 + n

p

) (2.51)

where Γ denotes the Gamma function. In particular, for positive real numbers a > 0 we have that Γ(a) :=∫∞
0
ra−1e−rdr, and for integers m ∈ Z≥1 we have Γ(1 + m) = m!. This latter equality motivates the

commonly used notation of writing (n/p)! for Γ(1 + n/p) in (2.51).
When p = 1 one can take ω(s, t) := ωx(s, t) = ||x||1,[s,t] and establish the estimate (2.51) via a direct

calculation; see Proposition 2.2 in [Lyons et al., 2007]. Consequently, in the case that p = 1 we have the
estimate that for every n ∈ Z≥1 and every (s, t) ∈ ∆[a,b] that

∣∣∣∣Sn
s,t(x)

∣∣∣∣
V ⊗n ≤

||x||n1,[s,t]
n!

. (2.52)
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One way to arrive at the estimates (2.51) for p ∈ (1, 2) is to invoke the Extension Theorem for multiplicative
functionals ∆[a,b] → T ((V )) appearing as Theorem 3.7 in [Lyons et al., 2007]. A definition of what is meant
by multiplicative functional ∆[a,b] → T ((V )) is provided below (cf. (2.53)) and can also be found in Definition
2.6, whilst a variant of the Extension Theorem appearing as Theorem 3.7 in [Lyons et al., 2007] is stated as
Theorem 2.9 in Subsection 2.9.

This Young integral approach does not work when p ≥ 2; however, the p = 2 threshold is not an artefact
due to some particular limitation of the Young integral approach. In fact no continuous extension of the Stieltjes
integral can be rich enough to handle Brownian paths. Further, the seemingly simple function mapping a path
to the area enclosed by the path fails to be continuous in the 2-variation norm. A detailed discussion of these
particular issues can be found in Section 1.5 on [Lyons et al., 2007].

In the remainder of this subsection we state some properties of signatures of paths with finite p-variation
for p ∈ [1, 2) that are particularly useful from our machine learning perspective. For this purpose we let
p ∈ [1, 2) and fix a path x ∈ Vp([a, b], V ).

The signature S(x) is a multiplicative functional ∆[a,b] → T ((V )). By multiplicative, we mean that
Chen’s identity holds; namely,

Ss,u(x)⊗ Su,t(x) = Ss,t(x) (2.53)

whenever a ≤ s ≤ u ≤ t ≤ b. A consequence of (2.53) is that the signature of a concatenated path decomposes
into the tensor product of the signatures of the constituent parts. More precisely, if x : [a, b] → V and
y : [b, c] → V are two continuous paths, then their concatenation x ∗ y is the path [a, c] → V defined by

(x ∗ y)t :=
{

xt if a ≤ t ≤ b
xb − yb + yt if b < t ≤ c.

(2.54)

It then follows from (2.53) that
Sa,c(x ∗ y) = Sa,b(x)⊗ Sb,c(y). (2.55)

Given any positive integer n ∈ Z≥1 we define truncated signature S(n)
a,b (x) by

S
(n)
a,b (x) := Πn

(
Sa,b(x)

)
. (2.56)

It follows that t 7→ S
(n)
a,t (x) is the solution to a truncated version of the differential equation stated in (2.38) for

the path x. To be precise, the mapping [a, b] → T (n)(V ) given by t 7→ S
(n)
a,t (x) solves the differential equation

dS
(n)
a,t (x) = S

(n)
a,t (x)⊗ dxt with S(n)

a,a = Πn(1) = (1, 0, . . . , 0) ∈ T (n)(V ). (2.57)

A detailed proof of this may be found in Chapter 7 of [Friz and Victoir, 2010], for example.
Given a word K = (k1, . . . , kn) ∈ {1, . . . , d}n we define the coordinate iterated integral Sa,b(x)

K by

Sa,b(x)
K :=

〈
Sa,b(x), v K

〉
T ((V ))

= v∗K
(
Sn
a,b(x)

)
. (2.58)

The name is justified by observing that in the case that the coefficients of the signature are given by (2.50), we
see via (2.36) that

Sa,b(x)
K =

∫
· · ·
∫

a≤t1≤...≤tn≤b

〈
dxt1 , vk1

〉
V
. . .
〈
dxtn , vkn

〉
V
. (2.59)

The product of two coordinate iterated integrals Sa,b(x)
K and Sa,b(x)

L yields a quadratic form. This quadratic
form turns out to coincides with a linear functional on elements within the image of the signature in T ((V )).

Before elaborating, we must introduce the Shuffle product � defined by

(i1, . . . , in)� (j1, . . . , jp) :=
∑

σ∈Shuff(n,p)

(
aσ−1(1), . . . , aσ−1(n+p)

)
(2.60)
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where (a1, . . . , an+p) := (i1, . . . , in, j1, . . . , jp) and

Shuff(n, p) := {σ ∈ Sn+p | σ(1) < . . . < σ(n) and σ(n+ 1) < . . . < σ(n+ p)}. (2.61)

For n, p ∈ N, Shuff(n, p) lists all the ways that two words, of length n and p respectively, can be combined
into a single word, of length n+p, whilst preserving the order in which the letters of each original word appear.

Returning to the coordinate iterated integrals Sa,b(x)
K and Sa,b(x)

L, on elements in the image of the
signature in T ((V )) their product is given by the coordinate iterated integral associated to the shuffle product
of the words K and L (cf. Theorem 2.15 in [Lyons et al., 2007]). That is,

Sa,b(x)
KSa,b(x)

L = Sa,b(x)
K� L. (2.62)

One consequence of (2.62) is that the coordinate iterated integrals span an algebra in T ((V )). Another conse-
quence is that the signature is a homomorphism of paths with concatenation into the tensor algebra. Reversing
a path produces the inverse tensor, and (2.62) establishes that the range is closed under multiplication. Hence
the range of the signature forms a group in the tensor algebra.

In fact, the group formed by the range of the signature is a subgroup of the group given by the group-like
elements G(∗) introduced in Definition 2.4. In order to formalise this, we first extend the shuffle product to a
binary operation on T (V ∗).

Given elements e∗, f∗ ∈ T (V ∗) we define their shuffle product e∗ � f∗ as an element in T (V ∗) as
follows. If e∗ = v∗K and f∗ = v∗L for finite words K = (i1, . . . , in) ∈ {1, . . . , d}n and L = (j1, . . . , jp) ∈
{1, . . . , d}p, then we define

v∗K � v∗L :=
∑

σ∈Shuff(n,p)

v∗(
aσ−1(1),...,aσ−1(n+p)

) (2.63)

where (a1, . . . , an+p) := (i1, . . . , in, j1, . . . , jp). The definition in (2.63) is then extended by linearity to the
entirety of T (V ∗).

The result of Theorem 2.15 in [Lyons et al., 2007] can be stated as follows. Let S
(
Vp([a, b], V )

)
⊂

T̃ ((V )) denote the collection of elements in the tensor algebra T ((V )) that arise as the signature of a path
[a, b] → V with finite p-variation, i.e. the signature of an element in Vp([a, b], V ). Then whenever e∗, f∗ ∈
T (V ∗) and a ∈ S

(
Vp([a, b], V )

)
⊂ T̃ ((V )) we have that

e∗ � f∗( a) = e∗( a) f∗( a) (2.64)

It turns out that the subset of T̃ ((V )) where the identity (2.64) holds for all e∗, f∗ ∈ T (V ∗) is a group (see
Lemma 2.17 in [Lyons et al., 2007]). Moreover, one can then give the following equivalent definition of the
group-like elements G(∗).

Lemma 2.5 (Equivalent definition of group-like; Variant of Theorem 2.23 in [Lyons et al., 2007]). Consider
an element a ∈ T̃ ((V )) and consider T (V ∗), the space of formal polynomials over V ∗, to be equipped with
the shuffle product. Define the evaluation map ev a : T (V ∗) → R by ev a

(
e∗
)
:= e∗( a). Then

a ∈ G(∗) if and only if ev a : T (V ∗) → R is a morphism of algebras. (2.65)

The range of the signature is a proper subgroup of G(∗), i.e. it is not the entirety of G∗ (cf. Subsection
2.9). However, given any finite integer n ∈ Z≥0, the free nilpotent group G(n) of order n (cf. Definition
2.4) is the image of the truncated signature truncated to depth n of the space Vp([a, b], V ). That is, G(n) =
Πn ◦ S

(
Vp([a, b], V )

)
(see Proposition 2.27 in [Lyons et al., 2007]).

Informally, it is helpful to think of the range of the signature map as a special curved space in the tensor
algebra. As a result there is a lot of valuable structure. A particularly important map is the logarithm; it is one to
one on the group and provides a flat parameterisation of the group in terms of elements of the free Lie series (see
Section 2 of [Lyons et al., 2007] for details). If x : [a, b] → V is a path with signature Sa,b(x) =

∏∞
n=0 S

n
a,b(x)

then we know that S0
a,b(x) ≡ 1. Hence, if we define Ŝa,b(x) := Sa,b(x) − 1 ∈ T ((V )), then we define the
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log signature by taking the logarithm (defined in Definition 2.2) of the element Sa,b(x) = 1 + Ŝa,b(x). This
results in defining the Lie series LogSiga,b(x) ∈ L((V )) by (cf. (2.40))

LogSiga,b(x) := logSa,b(x)
(2.40)
=

∞∑
n=1

(−1)n−1

n

(
Ŝa,b(x)

)⊗n

. (2.66)

Recall that the signature Sa,b(x) ∈ T̃ ((V )) since π0
(
Sa,b(x)

)
= 1. Thus, via Lemma 2.21 in [Lyons et al.,

2007], taking the exponential (defined in Definition 2.2) of the log signature recovers the signature, so no
information is lost. The log signature extracts the same information as the signature, but represents it in a more
compact way.

Analogously to the definition of the truncated signature in (2.56), given any positive integer n ∈ Z≥1 we
define the truncated log signature (truncated to depth n) by LogSig

(n)
a,b (x) := Πn

(
LogSiga,b(x)

)
. That is, the

truncated log signature (truncated to depth n) is the projection of the full log signature to L(n)(V ), the Lie
polynomials of degree n.

2.9. Rough Paths
In this subsection we outline how the theory of rough paths enables one to consider signatures in the setting
of p-variation regularity for p ≥ 2. The core idea is to view the signature as the core object rather than the
path itself. In Subsection 2.8 we observed that if x ∈ Vp([a, b], V ) for some p ∈ [1, 2), then its signature S(x)
is a multiplicative functional ∆[a,b] → T ((V )) with finite p-variation in the sense that there exists a control
ω : ∆[a,b] → R≥0 for which, given any n ∈ Z≥1 and any (s, t) ∈ ∆[a,b], we have

∣∣∣∣Sn
s,t(x)

∣∣∣∣
V ⊗n ≤ ω(s, t)n

Γ
(
1 + n/p

) .
This motivates the following definitions.

Definition 2.6 (Multiplicative Functional). Let V be a Banach space, [a, b] ⊂ R an interval, and n ∈ Z≥1.
Then a continuous functionX : ∆[a,b] → T (n)(V ) is called a multiplicative functional of degree n if it satisfies
both of the following properties.

(A) For every (s, t) ∈ ∆[a,b] we have that X0
s,t := π0(Xs,t) = 1.

(B) For every s, u, t ∈ [a, b] with s ≤ u ≤ t we have that Xs,u ⊗Xu,t = Xs,t.

A continuous function ∆[a,b] → T ((V )) satisfying both properties (A) and (B) is referred to as a multiplicative
functional.

Definition 2.7 (Finite p-Variation). Let V be a Banach space, [a, b] ⊂ R an interval, p ∈ R≥1, and define
β ∈ R≥1 by

β := p2

(
1 +

∞∑
r=3

(
2

r − 2

) ⌊p⌋+1
p

)
. (2.67)

Then a multiplicative functional X : ∆[a,b] → T ((V )) has finite p-variation if there exists a control ω :
∆[a,b] → R≥0 such that for every integer n ∈ Z≥1 and every (s, t) ∈ ∆[a,b] we have

∣∣∣∣Xn
s,t

∣∣∣∣
V ⊗n ≤ ω(s, t)

n
p

βΓ
(
1 + n

p

) (2.68)

where Γ denotes the Gamma function.

The constant β ∈ R in (2.67) simplifies numerical constants in many of the fundamental results in the theory of
rough paths. The precise value of β is not of particular importance; one could change its value without altering
the class of multiplicative functionals determined by the requirement of finite p-variation.
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We can now define a p-rough path for general p ∈ R≥1.

Definition 2.8 (p-Rough Path). Let V be a Banach space, [a, b] ⊂ R be an interval, and p ∈ R≥1. Then a
p-rough path in V is a multiplicative functional of degree ⌊p⌋ (cf. Definition 2.6) having finite p-variation (cf.
Definition 2.7). The collection of p-rough paths in V is denoted by Ωp(V ).

The space of p-rough paths Ωp(V ) is not closed under addition; having X,Y ∈ Ωp(V ) does not mean that
X + Y ∈ Ωp(V ). Consequently Ωp(V ) is not a vector space.

Given a p-rough path X ∈ Ωp(V ), for i ∈ Z≥1 we call Xi := πi(X) ∈ V ⊗i the ith iterated integral of
X despite there being no need for Xi to be related to any kind of integral.

The following Extension Theorem regarding p-rough paths is fundamental to the theory of rough paths.

Theorem 2.9 (Extension Theorem; Variant of Theorem 3.7 in [Lyons et al., 2007]). Let V be a Banach space,
[a, b] ⊂ R an interval, and p ∈ R≥1. Suppose that X ∈ Ωp(V ) is a p-rough path. Then there exists a unique
mutiplicative functional X̃ : ∆[a,b] → T ((V )) with finite p-variation that coincides with X up to level ⌊p⌋ in
the sense that Π⌊p⌋

(
X̃
)
≡ X .

The Extension Theorem 2.9 allows us to make the following definition of the signature of a p-rough path
X ∈ Ωp(V ).

Definition 2.10 (Signature of a p-rough path). Let V be a Banach space, [a, b] ⊂ R an interval, p ∈ R≥1, and
X ∈ Ωp(V ) be a p-rough path. The signature of X is the unique multiplicative functional S(X) : [a, b] →
T ((V )) with finite p-variation such that Π⌊p⌋

(
S(X)

)
≡ X in T (⌊p⌋)(V ).

Once again we define the log signature of a p-rough path to be the Lie series in L((V )) resulting from taking
the logarithm defined in Definition 2.2 of the signature. If X ∈ Ωp(V ) is a p-rough path and S(X) : [a, b] →
T ((V )) denote the signature ofX , the log signature ofX is the multiplicative functional LogSig(X) : ∆[a,b] →
T ((V )) defined for (s, t) ∈ ∆[a,b] by (cf. (2.40))

LogSigs,t(X) :=

∞∑
n=1

(−1)n−1

n

(
S(X)− 1

)⊗n
(2.69)

It is once again true that taking the exponential of the log signature recovers the signature. The log signature
once again represents the same information as the signature but in a more compact form.

We observe that Definition 2.10 of the signature of a p-rough path is consistent with the definition of the
signature given in Subsection 2.8 when p ∈ [1, 2). Indeed if p ∈ [1, 2) then a p-rough path X ∈ Ωp(V )
coincides with the signature of a path x ∈ Vp([a, b], V ) as defined in Subsection 2.8. To be more precise, first
suppose that x ∈ Vp([a, b], V ). Then the signature S(x) is the unique p-rough path X ∈ Ωp(V ) satisfying,
for every (s, t) ∈ ∆[a,b], that Π1(Xs,t) = (1, xt − xs) ∈ T (1)(V ). Conversely, let X ∈ Ωp(V ) for p ∈ [1, 2).
Then if we define x ∈ Vp([a, b], V ) by defining xa := π1(Xa,a) and, for t ∈ (a, b], xt := π1(Xa,t) + xa,
then it turns out that X coincides with the truncated signature S(1)(x) of this path x [Lyons et al., 2007]. The
Extension Theorem 2.9 then ensures that X ≡ S(x) as elements in the tensor algebra T ((V )). In this case,
given an integer i ∈ Z≥1, the projection Xi := πi(X) of X to V ⊗i is given by the ith iterated integral of the
path x, providing some justification for choosing to call Xi the ith iterated integral of X .

An illustrative example is the so-called Brownian rough path. For this purpose we let V = Rd and
consider an Rd valued Brownian motion B : [0, T ] → Rd for some T > 0. For each t ∈ [0, T ] we will write
Bt =

(
B1

t , . . . , B
d
t

)
as the decomposition of Bt with respect to the canonical basis e1, . . . , ed of Rd. Then we

may define a multiplicative functional I : ∆[0,T ] → T (2)
(
Rd
)

by setting, for (s, t) ∈ ∆[0,T ],

Is,t =
(
1, I1s,t, I

2
s,t

)
∈ T (2)

(
Rd
)

(2.70)

where

I1s,t =

d∑
j=1

I1,js,t ej =
∑
j=1

(
Bj

t −Bj
s

)
ej = Bt −Bs (2.71)
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and

I2s,t =

d∑
i=1

d∑
j=1

I2,ijs,t ei ⊗ ej =

d∑
i=1

d∑
j=1

∫ T

0

∫ u2

0

dBi
u1
dBj

u2
ei ⊗ ej . (2.72)

The multiplicative functional I , which is sometimes called the Îto 2-multiplicative functional, is a p-rough path
for any 2 < p < 3 (see Corollary 3.17 in [Lyons et al., 2007]). The unique extension of I to a multiplicative
functional [0, T ] → T

((
Rd
))

with finite p-variation then provides an interpretation for the signature of a
Brownian motion.

Given the important role played by the notion of finite p-variation provided by Definition 2.7, we would
like a notion of the p-variation distance between two p-rough paths. To do so, we first observe that Ωp(V ) is a
subset of the vector space C0

p

(
∆[a,b];T

(⌊p⌋)(V )
)

of continuous functions ∆[a,b] → T (⌊p⌋)(V ). We can equip
Ωp(V ) with a p-variation metric dp by first defining it on the linear space C0

p

(
∆[a,b];T

(⌊p⌋)(V )
)
. That is, for

X,Y ∈ C0
p

(
∆[a,b];T

(⌊p⌋)(V )
)

we define

dp(X,Y ) := max
i∈{1,...,⌊p⌋}

sup
a≤t0≤...≤tr≤b

(
r−1∑
j=0

∣∣∣∣∣∣Xi
tj ,tj+1

− Y i
tj ,tj+1

∣∣∣∣∣∣ pi
V ⊗i

) 1
p

(2.73)

where for each i ∈ {1, . . . , ⌊p⌋} and every (s, t) ∈ ∆[a,b] we have Xi
s,t := πi(Xs,t) and Y i

s,t := πi(Ys,t).
If the space of p-rough paths is equipped with the p-variation metric then

(
Ωp(V ), dp

)
is a complete metric

space [Lyons and Qian, 2002]. A more convenient characterisation of the notion of convergence induced by dp
is provided in [Lyons and Qian, 2002] (see also Definition 3.12 in [Lyons et al., 2007]).

Whilst the notion of p-rough path defined in Definition 2.8 extends the theory from Subsection 2.8, it
does so in an abstract theoretical manner. A more hands-on extension of the theory from Subsection 2.8 can be
made as follows. Consider q ∈ [1, 2) and a path x ∈ Vq([a, b], V ). Then x defines a q-rough path X ∈ Ωq(V )
by setting Xs,t := (1, xt − xs) ∈ T (1)(V ) for (s, t) ∈ ∆[a,b]. Then given any p ≥ q the Extension Theorem
2.9 tells us that this functional X can be extended to a multiplicative functional of degree ⌊p⌋ with finite
q-variation, and hence of finite p-variation.

In particular, a path with bounded variation (i.e. a path in V1([a, b], V )) can be canonically viewed as a
p-rough path for any p ≥ 1. Thus under this identification of an element x ∈ V1([a, b], V ) with a p-rough
path X ∈ Ωp(V ), we can view V1([a, b], V ) as a subset of Ωp(V ). Hence we can consider the closure of
V1([a, b], V ) in Ωp(V ) with respect to the metric dp defined in (2.73).

Definition 2.11 (Geometric p-Rough Path). Let V be a Banach space, [a, b] ⊂ R an interval, and p ∈ R≥1.
Then a geometric p-rough path in V is a p-rough pathX ∈ Ωp(V ) for which there exists a sequence of 1-rough
paths {X(n)}∞n=1 ⊂ Ω1(V ) with dp(X(n), X) → 0 as n → ∞. The space of geometric p-rough paths in V
is denoted by GΩp(V ).

It is evident that we have the inclusion thatGΩp(V ) ⊂ Ωp(V ). However, the inclusion is strict; not all p-rough
paths are geometric p-rough paths. For example, the Itô 2-multiplicative functional I defined in (2.70) is a
p-rough path for p ∈ (2, 3) but it is not geometric (see Section 3.3.1 in [Lyons et al., 2007]). But one can use
an Rd valued Brownian motion to determine a geometric p-rough path for p ∈ (2, 3). This can be done by
considering the dyadic piecewise linear approximation to the Brownian motion.

To be more precise, once again let V = Rd and consider an Rd valued Brownian motion B : [0, T ] → Rd

for some T > 0. For each n ∈ Z≥0 let x(n) : [0, T ] → Rd be the continuous path that is linear off the dyadic
points k/2n and satisfies that x(n)k/2n = Bk/2n . Further, for each n ≥ 0 we can define a multiplicative
functional S(n) : ∆[0,T ] → T (2)(Rd) of degree 2 by setting, for each (s, t) ∈ ∆[0,T ],

S(n)s,t :=

(
1,

∫ t

s

dx(n)u,

∫ T

0

∫ u2

0

dx(n)u1
⊗ dx(n)u2

)
∈ T (2)

(
Rd
)
. (2.74)

For any p > 2 the sequence {S(n)}∞n=1 is a Cauchy sequence in the p-variation topology [Sipilainen, 1993,
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Friz, 2005]. Moreover its limit is given by

Ss,t =

(
1, Bt −Bs,

1

2

(
Bt −Bs

)⊗2
+As,t

)
∈ T (2)

(
Rd
)

(2.75)

where As,t is the Lévy area of the Brownian motion. That is, for i, j ∈ {1, . . . , d} we have

Aij
s,t :=

1

2

∫ T

0

∫ u2

0

dBi
u1
dBj

u2
− dBj

u1
dBi

u2
. (2.76)

The second iterated integral of the limit functional S is nothing but the second iterated Stratonovich integral of
the Brownian motion; that is

S2
s,t

(2.75)
=

1

2
(Bt −Bs)

⊗2
+As,t =

∫ T

0

∫ u2

0

◦dBu1
⊗ ◦dBu2

. (2.77)

Consequently, the signature of the functional S is simply the Stratonovich signature of the Brownian motion,
i.e. the multiplicative functional X : ∆[0,T ] → T

((
Rd
))

with, for n ∈ Z≥1, its nth iterated integral Xn :

∆[0,T ] →
(
Rd
)⊗n

given by

Xn
s,t :=

∫
· · ·
∫

s≤u1≤···≤un≤t

◦dBu1 ⊗ . . .⊗ ◦dBun . (2.78)

This motivates the terminology that the multiplicative functional S defined in (2.75) is called the canonical
Brownian rough path. Proof that S ∈ GΩp

(
Rd
)

for p ∈ (2, 3) may be found in [Sipilainen, 1993].
Recall from Subsection 2.8 that if x ∈ Vp([a, b], V ) for a p ∈ [1, 2) then, as an element in the tensor

algebra T ((V )), the signature S(x) is group-like, i.e. S(x) ∈ G(∗) where the group-like elements are defined
in Definition 2.4. In particular, given an integer n ∈ Z≥0, the truncated signature S(n)(x) takes its values in
the free nilpotent group G(n) of order n (cf. Definition 2.4). The algebraic properties related to the shuffle
product that define G(n) ensure that a geometric p-rough path takes its values in G(⌊p⌋). Unfortunately this
does not characterise geometric rough paths amongst all rough paths.

Definition 2.12 (Weakly Geometric p-Rough Path). Let V be a Banach space, [a, b] ⊂ R an interval, and
p ∈ R≥1. Then a weakly geometric p-rough path in V is a p-rough path X ∈ GΩp(V ) which takes its values
in G(⌊p⌋), the free nilpotent group of order ⌊p⌋. We denote the space of weakly geometric p-rough paths by
WGΩp(V ).

The collection of weakly geometric p-rough paths WGΩp(V ) is distinct from both the collection of geometric
p-rough paths GΩp(V ), and the collection of p-rough paths Ωp(V ). Indeed we have the following strict
inclusions:

GΩp(V ) ⊂WGΩp(V ) ⊂ Ωp(V ). (2.79)

It is not immediately obvious that the first inclusion is strict; the interested reader may find the details in [Friz
and Victoir, 2006]. The difference between geometric and weakly geometric rough paths is an annoying
technicality that is, in spirit, similar to the distinction between C1 and Lipschitz functions. The difference
between geometric rough paths and general rough paths is, however, substantial. The class of weakly geometric
rough paths is the most important one to bear in mind for all the applications considered in this article.

We end this subsection with a remark about the interaction of the p-variation topology and the q-variation
topology for real numbers q ≥ p ≥ 1. Suppose that we have a p-rough path X ∈ Ωp(V ). Then the Extension
Theorem 2.9 tells us that X can be canonically extended to a q-rough path, and thus we can slightly abuse
notation and write X ∈ Ωq(V ). In this way, any subset K ⊂ Ωp(V ) can be viewed as a subset K ⊂ Ωq(V ).

Now suppose that K ⊂ Ωp(V ) is a compact subset, which, in particular, means that K is a compact subset
in the topology induced by the p-variation metric dp defined in (2.73). Consider the map Ep,q : Ωp(V ) →
Ωq(V ) mapping an element Y ∈ Ωp(V ) to its canonical extension in Ωq(V ). That is, Ep,q(Y ) is the truncation
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to depth ⌊q⌋ of the extension Ỹ of Y provided by the Extension Theorem 2.9. It follows from Theorem 3.10
in [Lyons et al., 2007] that the mapEp,q is continuous when the domain Ωp(V ) is equipped with the p-variation
metric dp defined in (2.73) and the target Ωq(V ) is equipped with the q-variation metric dq defined in (2.73).
Hence, being the continuous image of a compact set, the image Ep,q(K) is a compact subset of

(
Ωq(V ), dq

)
.

Moreover,Ep,q restricted to K is an injective continuous mapping from a compact set K into the Hausdorff
space

(
Ωq(V ), dq

)
. Thus the restriction of Ep,q to K is in fact a homeomorphism onto its image, and so the

q-variation topology on the image Ep,q(K) coincides with the p-variation topology on K.
Therefore, for every q ≥ p the image Ep,q(K) is a compact subset of

(
Ωq(V ), dq

)
, and the q-variation

topology induced on Ep,q(K) by viewing it as a subset of Ωq(V ) coincides with the p-variation topology
induced on K as a subset of

(
Ωp(V ), dp

)
.

3. Signature as a Feature Map

We assume that V is a finite d-dimensional Banach space, and that Ω ⊂ S(V ) × R is a labelled dataset.
Following our conventions, this means that each element in Ω is a pair ( x, y) ∈ S(V ) × R where the stream
x is assumed to consist of incremental data. We assume that the streams of increments x contained within the

set Ω are of the form determined by the method of transforming a stream of values to a stream of increments
detailed in Subsection 2.3. A particular consequence of this assumption is that the integer d ∈ Z≥1 must be
even; see Subsection 2.3.

Suppose that M ∈ Z≥1 is finite, and that Ω =
{
( xk, yk) ∈ S(V ) × R | k ∈ {1, . . . ,M}

}
. Recall that

ΩS(V ) ⊂ S(V ) denotes the projection of Ω onto S(V ). Moreover, we assume that ΩS(V ) ⊂ M ⊂ S(V ),
and our goal is to use the labelled dataset Ω to learn a continuous function f ∈ C0(M;R) for the purpose
of predicting the systems response to inputs x ∈ S(V ) that are not within ΩS(V ). We reiterate that we are
implicitly assuming that, in some sense, the subset M is sufficiently well approximated by ΩS(V ) to make this
task reasonable (cf. Subsection 2.3).

We now outline a basic strategy for incorporating the signature as a feature map in this regression task.

Simple Signature Regression Framework

(A) Consider the set of contours C =
{
Γ xk | k ∈ {1, . . . ,M}

}
where, for each k ∈ {1, . . . ,M}, the

contour Γ xk is the contour formed by the concatenation of the entries within the stream of increments
xk.

(B) For each k ∈ {1, . . . ,M} choose a parameterisation γk : [0, 1] → V of the contour Γ xk . For each
k ∈ {1, . . . ,M}, the stream xk contains a finite number of increments, thus each path γk is of bounded
variation. That is, for each k ∈ {1, . . . ,M} we have γk ∈ V1([0, 1], V ), and so we can consider its
signature S(γk) : ∆[0,1] → T ((V )).

(C) Choose K0 ∈ Z≥1 and consider the collection of truncated to depth K0 signatures S(K0)(γk) for k ∈
{1, . . . ,M}. Numerically solve the system of equations given by

K0∑
i=0

∑
J∈{1,...,d}i

αi( J)S0,1(γk)
J = yk (3.1)

for each k ∈ {1, . . . ,M}. This is a system of M equations in 1 + d+ . . .+ dK0 = dK0+1−1
d−1 variables.

(D) Take the learnt function to be f : M → R defined by

f( v) :=
K0∑
i=0

∑
J∈{1,...,d}i

αi( J)S0,1

(
γ( v)

) J
, (3.2)

where γ( v) : [0, 1] → V is a parameterisation of the contour Γ v corresponding to the stream v ∈ M.
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The sensibility of this approach and the attractiveness of the signatures as a feature map from a machine
learning point of view, as claimed in Section 2.6, rely on the following key theoretical properties of signatures.
The first key property is that the infinite graded sequence of statistics provided by the signature identifies a
contour in an essentially unique manner.

Theorem 3.1 (Uniqueness of signature, [Hambly and Lyons, 2010, Boedihardjo et al., 2016]). Let V be a
Banach space, [a, b] ⊂ R a compact interval, and p ∈ R≥1. Then the signatures of two geometric p-rough
paths X,Y ∈ GΩp(V ) coincide if and only if the X and Y are tree-like equivalent.

The full technical details of tree-like equivalence may be found in either of [Hambly and Lyons, 2010] or
[Boedihardjo et al., 2016], for example. Heuristically, the signature determines the path up to sections on which
the path exactly retraces itself. In our setting such sections can be avoided by augmenting the initial streams to
contain a monotonic channel. Recalling our view that the data is in the form of streams of increments, this can
be achieved, for example, by augmenting each stream to have a channel consisting of strictly positive entries.

One particularly important example of tree-like equivalence is when one path is a translation of the other.
To be more precise, suppose that γ : [a, b] → V is a continuous path of bounded variation. Consider a fixed
v ∈ V and define a continuous path of bounded variation ψ : [a, b] → V by setting, for t ∈ [a, b], ψt := γt+v.
Then γ and ψ are tree-like equivalent. Consequently the signature is invariant under translation of a path.

This invariance motivates our use of the invisibility reset transformation (cf. Subsection 2.5) when detail-
ing our method of transforming a stream of values into a stream of increments in Subsection 2.3. Indeed the
invisibility reset transformation is used to explicitly encode both the first and last values of a stream into its
resulting stream of increments in a manner that is invariant under translation. Consequently, the signature of
the path resulting from the concatenation of these increments will capture information related to the norm/size
of the entries in the original stream of values. This information would not be captured by the signature if we
worked with the stream of incremental changes obtained by only considering the differences between succes-
sive entries of the original stream of values.

Another important example of tree-like equivalence is when one path is a reparameterisation of the other.
To be more precise, suppose that γ : [a, b] → V is a continuous path of bounded variation. Then if ψ : [a, b] →
[a, b] is a continuously differentiable increasing surjection, then the paths γ and γ ◦ ψ are tree-like equivalent.
Consequently the signature is invariant under reparameterisation of a path; it essentially quotients out the
infinite-dimensional group of time reparameterisation. This formalises our earlier claims that the signature
filters out the parameterisation noise.

A consequence of this reparameterisation invariance is that the signature can record the order of events
without needing to record precisely when each event occurs. This is a distinct advantage compared to Fourier
transform/wavelets techniques.

Consider, for example, monitoring financial markets for signs of insider trading. Three events that might
be of interest are a phone call, a trade and price movement. The order of these three events is critical; the
order phone call, trade and then price movement could indicate insider trading. To capture the order using
Fourier series or wavelets we must sample each of the three channels representing the three events. The
sampling frequency will likely need to be very high to resolve each channel accurately enough to capture the
order, leading to the consideration of large quantities of uninformative data. But the signature captures this
information in the first two levels irrespective of how it is sampled, see example 3.8 in [Levin et al., 2013].

Theorem 3.1 ensures that, for each k ∈ {1, . . . ,M}, the choice of parameterisation γk for the contour Γk

is irrelevant to the resulting signature S(γk). Any two parameterisations of Γk are reparameterisations of one
and other, and hence Theorem 3.1 means their signatures coincide. In fact this provides a way to determining
a topology on a space of unparameterised paths in V .

Indeed, given a fixed compact interval [a, b] ⊂ R, we may consider the space of unparameterised paths
in V determined by taking the quotient of V1([a, b], V ) with respect to the equivalence relation generated
by the notion of tree-like equivalence [Hambly and Lyons, 2010]. We will denote the resulting space by
Path1([a, b], V ), and each element within it is an equivalence class [γ] for some γ ∈ V1([a, b], V ). By appeal-
ing to Theorem 3.1, we can define the signature of an element [γ] ∈ Path1([a, b], V ) to be the signature of any
representative α ∈ V1([a, b], V ) of the equivalence class [γ].

There is no canonical topology on Path1([a, b], V ) [Hambly and Lyons, 2010]. A thorough investi-
gation of various approaches to equipping Path1([a, b], V ) with a topology and the subsequent properties
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of each resulting topology is provided in [Cass and Turner, 2024]. A concrete way to use the signature
to determines a topology on Path1([a, b], V ) is to define a metric on Path1([a, b], V ) as follows. Given
[γ], [α] ∈ Path1([a, b], V ) define

dPath1

(
[γ], [α]

)
:= d1

(
S(γ), S(α)

)
(3.3)

where S(γ), S(α) : ∆[a,b] → T ((V )) denote the signatures of γ and α respectively, and d1 is the 1-variation
metric defined in (2.73). Theorem 3.1 ensures that dPath1 defined in (3.3) is well-defined.

The next key property is that the terms of the signature decay in size factorially as the order increases.

Theorem 3.2 (Factorial Decay; Proposition 2.2 in [Lyons et al., 2007]). Let V be a Banach space, [a, b] ⊂ R
a compact interval, and γ ∈ V1([a, b], V ). Let S(γ) : ∆[a,b] → T ((V )) denote the signature of γ. Then for
every n ∈ Z≥1 and every (s, t) ∈ ∆[a,b], the nth component of the signature Sn(γ) : ∆[a,b] → V ⊗n satisfies
that ∣∣∣∣Sn

s,t(γ)
∣∣∣∣
V ⊗n ≤

||γ||n1,[a,b]
n!

. (3.4)

Consequently, in a norm based sense, the truncation of the signature to a finite depth manages to capture the
terms with the most significant contribution. Thus it is reasonable, again in a norm based sense, to imagine
that by choosing a sufficiently large K0 in Simple Signature Regression Framework step (C), the resulting
truncated signatures still manage to summarise the most significant affects of the paths.

Examining Simple Signature Regression Framework steps (C) and (D), the underlying idea is to ap-
proximate the systems response by a linear combination of signature components. The sensibility of this
relies upon which classes of functions are captured by such linear combinations. Loosely, we need to know
if linear combinations of signature components are capable of providing a good approximation to an arbitrary
continuous function. The final key property is that this is the case since continuous functions of paths are
approximately linear on signatures. Thus the signature is, in some sense, a universal nonlinearity on paths.

Theorem 3.3 (Universal Nonlinearity; Variant of Theorem 2.1 in [Lemercier et al., 2021]). Let V be a Banach
space, [a, b] ⊂ R a compact interval, K ⊂ Path1([a, b], V ) a compact subset, and F : K → R a continuous
function. Then for any ε > 0 there exists a truncation level n ∈ Z≥1 and a collection of real coefficients{
αi( J) | i ∈ {0, . . . , n} and J ∈ {1, . . . , d}i

}
such that for every [θ] ∈ K we have∣∣∣∣∣F ([θ])−

n∑
i=0

∑
J∈{1,...,d}i

αi( J)Sa,b(θ)
J

∣∣∣∣∣ ≤ ε. (3.5)

In Theorem 3.3 the topology on Path1([a, b], V ) is the topology determined by the metric dPath1
defined in

(3.3). We sketch one approach to establishing this result. The image
{
S(γ) | [γ] ∈ K

}
determines a compact

subset of Ω1(V ). Further, the shuffle product relation (2.62) can be used to establish that the coordinate
iterated integrals span an algebra. Then the conclusion of Theorem 3.3 is obtained by appealing to the Stone–
Weierstrass Theorem [Stone, 1948].

Returning to Simple Signature Regression Framework step (A), the subset
{
Γk | k ∈ {1, . . . ,M}

}
determines a finite subset of Path1([0, 1], V ). Hence Theorem 3.3 is applicable, and we are guaranteed that,
provided a sufficiently large truncation level is chosen, it will be possible to approximate any continuous func-
tion on this finite subset by a linear combination of the coordinate iterated integrals of the truncated signature.

We have only examined the signatures of the contours corresponding to the data set at the 1-variation
scale. An obvious motivation for doing so is that the contours naturally make sense at this scale; that is, as
paths with bounded variation. But just because they make sense at this scale does not mean it is the most
natural scale to work with. It might be more sensible to consider them at the p-variation scale for p > 1.

As observed in Subsection 2.9, if γ ∈ V1([a, b], V ) and p ≥ 1 then the truncation of the signature of γ to
depth ⌊p⌋ give a canonical way to lift γ to a p-rough path X(p) = S(⌊p⌋)(γ) ∈ Ωp(V ). Consequently one can
canonically view V1([a, b], V ) as a subset of Ωp(V ), and choose to work with the p-variation topology induced
by the p-variation distance metric defined in 2.73. For each j ∈ {1, . . . ,M} and any p ∈ R≥1 letXj(p) denote
the canonical lift of γj to a p-rough path in Ωp(V ), i.e. Xj(p) := S(⌊p⌋)(γj).
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Then as remarked at the end of Subsection 2.9, the subset
{
X1(p), . . . , XM (p)

}
is both compact as a sub-

set in (Ωp(V ), dp), and additionally satisfies that the p-variation topology induced on
{
X1(p), . . . , XM (p)

}
coincides with the 1-variation topology induced on

{
X1(1), . . . , XM (1)

}
as a subset of (Ω1(V ), d1). Conse-

quently, the theoretical guarantees of Theorem 3.3 remain valid even after switching to viewing our collection
of signatures at the p-variation scale for some p > 1.

The central idea has been to associate a particular p-rough path with each stream xk in the original data
set ΩS(V ). Thus far we have considered doing so by first associating a 1-rough path with the stream xk,
and, if deemed sensible, subsequently lifting this 1-rough path to a p-rough path for p > 1. The incremental
information provided by the stream xk determines how the lift is defined. However, if the stream xk contains
more than just incremental data, there may be a more natural way of prescribing the higher order information
in order to associate xk with a p-rough path.

For example, suppose a stream provided increments corresponding to an Rd valued Brownian motion
B : [0, T ] → Rd for some T > 0. Then both the Itô 2-multiplicative functional (cf. (2.70)) and the canonical
Brownian rough path (cf. (2.75)) defined in Subsection 2.9 determine distinct p-rough paths, for p ∈ (2, 3),
which could be associated to the stream. However, if the stream additionally contained information determining
how, for example, the area evolves, then which of these two candidates is more appropriate to choose could be
determined.

The point is that we could associate a p-rough path to a stream x by appropriately prescribing the coor-
dinate iterated integrals up to depth ⌊p⌋. The Extension Theorem 2.9 would then tell us that all the coordinate
iterated integrals at higher depths would be uniquely determined, and so we could follow the method outlined
in Simple Signature Regression Framework using the signatures of these prescribed p-rough paths. Con-
sideration of Theorem 3.1 suggests it is most sensible to associate each stream with a geometric p-rough path,
since we then preserve the same sense of uniqueness for the signature.

Indeed with this tree-like equivalence being preserved we could repeat our earlier approach. We can
define Pathp([a, b], V ) to be the quotient of GΩp(V ) with respect to the equivalence relation generated by the
notion of tree-like equivalence. Once again Theorem 3.1 ensures we can define the signature of an element
[X] ∈ Pathp([a, b], V ) to be the signature of the geometric p-rough path Y ∈ GΩp(V ) for any representative
Y of the equivalence class [X]. The p-variation metric dp on Ωp(V ) can now be used to define a metric on
Pathp([a, b], V ). Given [X], [Y ] ∈ Pathp([a, b], V ) define

dPathp

(
[X], [Y ]

)
:= dp

(
S(X), S(Y )

)
(3.6)

where S(X), S(Y ) : ∆[a,b] → T ((V )) denote the signatures ofX and Y respectively, and dp is the p-variation
metric defined in (2.73). Theorem 3.1 ensures that dPathp

defined in (3.3) is well-defined.
The analogue of Theorem 3.3 in this setting can then be established in exactly the same way. Multiplica-

tivity ensures the shuffle product remains valid, and so the coordinate iterated integrals (i.e. the components
of the signature) still span an algebra. Hence the Stone–Weierstrass theorem [Stone, 1948] may once again
be invoked to determine that on compact subsets of Pathp([a, b], V ) continuous functions can be arbitrarily
well-approximated by linear combinations of coordinate iterated integrals (i.e. signature components).

The theoretical guarantees for the strategy outlined in Simple Signature Regression Framework make
the signature an attractive choice of feature map. The signature summarises a path in a way that is essentially
unique and, in particular, that is invariant under reparameterisation of the path (cf. Theorem 3.1). The coeffi-
cients of the signature (namely, the coordinate iterated integrals) provide a set of feature functions that have a
natural grading (cf. Theorem 3.2), and which are rich enough to capture continuous functions on path space
(cf. Theorem 3.3).

The log signature is also an appealing candidate feature map. As previously remarked, the log signature
captures the same information as the signature, and represents it in a more compact form. This seems ideal
from our machine learning perspective. However, whilst no information about the path is lost, information
regarding the nonlinearity is lost.

The coefficients of the signature are rich enough to capture continuous functions on path space via linear
combinations (cf. Theorem 3.3). Thus the signature captures the universal nonlinearity of the path, reducing
all continuous nonlinearities to linear combinations of its coefficients. This property is not true for the log
signature; whilst the coefficients of the log signature can be used to capture continuous functions, it is not
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achieved via linear combinations. Instead, more complicated nonlinear combinations of the log signature
coefficients are required. Loosely, the signature captures both the information and the nonlinearity of a path,
whilst the log signature captures only the information.

4. Controlled Differential Equations and the Log-ODE Method
The log-ODE method, developed within the area of rough path theory [Lyons, 1998, Lyons et al., 2007, Friz
and Victoir, 2010], is a numerical method for solving Controlled Differential Equations (CDEs) using the
log signature of the control path over short time intervals, rather than relying on pointwise evaluations of the
control path. CDEs provide a framework under which one can give a precise meaning for the response of a
system to a path according to some specified dynamics.

We first precisely define the notion of a CDE driven by a path. Let t0, t1 ∈ R with t0 < t1 and V,W both
be a Banach space. Suppose that X : [t0, t1] → V is a path. Let L(V,W ) denote the set of continuous linear
mappings V → W and suppose that f : W → L(V,W ) is continuous. Then a path z : [t0, t1] → W solves a
CDE controlled, or driven, by X with initial condition w ∈W if

zt0 = w and dzt = f(zt)dXt (4.1)

for every t ∈ (t0, t1]. The CDE framework provides a precise meaning for the response of a system z to the
path X according to the dynamics f . In the case that V := R and X(t) := t for every t ∈ [t0, t1] the CDE
(4.1) reduces to an Ordinary Differential Equation (ODE). An excellent introduction to CDEs may be found
in [Lyons et al., 2007]. A comprehensive exposition is provided in the textbook [Friz and Victoir, 2010]. CDEs
have been used within the field of Deterministic Control Theory; a comprehensive introduction to deterministic
control theory can be found in [Zabczyk, 2020].

The link with signatures is apparent from our earlier observation in Section 2.7 (cf. (2.38)) that the
signature of a path X solves the universal non-commuting exponential CDE driven by X . That is, the path
z : [t0, t1] → T ((V )) defined by zt := St0,t(X) for t ∈ [t0, t1] satisfies that

zt0 = 1 = (1, 0, 0, . . . ) ∈ T ((V )) and dzt = zt ⊗ dXt (4.2)

for every t ∈ (t0, t1]. It turns out that the solution of any linear CDE can be expressed in terms of signature.
For example, if the control path X ∈ V1([t0, t1], V ) and f(zt)dXt = B(dXt)zt for a bounded linear map
B : V → L(W,W ), then the solution to (4.1) is given by

zt =

( ∞∑
n=0

B⊗n
(
Sn
t0,t(X)

))
[w] (4.3)

for any t ∈ [t0, t1]. This follows from the standard Picard iteration argument coupled with the factorial decay
rate for the signature components Sn

t0,t(X) (cf. Theorem 3.2 in this article); see [Lyons et al., 2007, Lyons,
2014], for example. Existence and uniqueness results for the general case using rough path theory may be
found, for example, in [Lyons, 1998, Lyons et al., 2007, Friz and Victoir, 2010].

The map f in (4.1) can be thought of as a linear map from V to the space of vector fields on W . This
object takes an element v ∈ V and an element w ∈ W and produces a second element in W representing the
infinitesimal change to the state z of the system that will occur if X is changed infinitesimally in the direction
v [Lyons, 2014]. The link between truncated log signatures and vector fields (see Section 6 in [Lyons, 2014],
for example) can be turned into a practical approach to understanding CDEs.

The naive approach of using a Taylor series based method to approximate the solution using truncated
log signatures suffer stability issues. The log-ODE method avoids these issues by returning the numeric issues
back to state-of-the-art ODE solvers. This is achieved by using the truncated log-signature to determine a
path-dependent vector field f̃ such that the solution to the ODE dxt

dt = f̃(xt) provides a good approximation
to the solution of the original CDE. Stability issues are now determined by the choice of ODE solver.

The log-ODE method has proven useful in several rapidly developing areas. It is central to the devel-
opment of Neural Rough Differential Equations in [Morrill et al., 2021b] and their subsequent refinement
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in [Walker et al., 2024]. In [Foster et al., 2020] it is illustrated that the log-ODE method may be used for the
numerical approximation of Stochastic Differential Equations (SDEs). Neural Rough Differential Equations
are covered in Section 9 of this article. The log-ODE method proposed in [Foster et al., 2020] exhibits high
order convergence rates that are comparable with all contemporary high order methods for the numerical ap-
proximation of SDEs, and can significantly outperform lower order numerical methods for SDEs (such as the
Euler-Maruyama and Milstein methods).

We finish this section by following the presentation in Appendix A of [Morrill et al., 2021b] to illustrate
the log-ODE method under the assumption that both V and W are finite dimensional. Treatment of the infinite
dimensional case may be found in [Boutaib et al., 2013], for example. We assume X ∈ V1([0, T ], V ) has
finite length and that f : W → L(V,W ) is either linear or bounded with N bounded derivatives for some
given N ∈ Z≥0. For k ∈ {0, . . . , N} we define f◦(k) : W → L

(
V ⊗k,W

)
using the derivatives of f as

follows (see Definition A.6 in [Morrill et al., 2021b]). Below we use the notation that Df◦(k−1) : W →
L(W, L(V ⊗(k−1),W )) denotes the Fréchet derivative of f◦(k−1). We additionally use the convention that

rounded brackets (·) are used for evaluation at points in W , whilst square brackets [·] have been used for
evaluation at points in V and its tensor powers.

• For k = 0 we define f◦(0) :W →W by setting f◦(0)(y) := y for every y ∈W .

• For k = 1 we define f◦(1) :W → L(V,W ) by setting f◦(1)(y) := f(y) for every y ∈W .

• For the remaining k ∈ {2, . . . , N} we proceed inductively. Once f◦(k−1) : W → L(V ⊗(k−1),W ) has
been defined, define f◦(k) : W → L(V ⊗k,W ) as follows. For each y ∈ W we set f◦(k)(y) to be the
unique k-linear map in L(V ⊗k,W ) for which

f◦(k)(y)[v ⊗ vk−1] = Df◦(k−1)(y)
(
f(y)[v]

)[
vk−1

]
(4.4)

whenever v ∈ V and vk−1 ∈ V ⊗(k−1).

As noted in [Morrill et al., 2021b] the functions f◦(0), . . . , f◦(N) naturally arise in the Taylor expansion as-
sociated to the CDE (4.1). A combination of the functions f◦(0), . . . , f◦(N) and the truncated log signature
LogSigN (X) is used to give an appropriate vector field f̃ .

Suppose that t0 ≤ s < t ≤ t1 and that we know the solution at time s, i.e. that we are given zs. Further
suppose that we have computed the truncated log signature LogSig

(N)
s,t (X). Then we define a vector field

f̃ :W → L(V,W ) by

f̃(u) :=

N∑
k=0

f◦(k)(u)

[
πk

(
LogSig

(N)
s,t (X)

)]
(4.5)

for u ∈W . Here πk : T (N)(V ) → V ⊗k denotes the projection map. We may then consider the ODE

x(0) = zs and
dx(r)

dr
= f̃(x(r)) (4.6)

for all times r ∈ (0, 1]. Then the log-ODE approximation of zt (given zs and LogSig
(N)
s,t (X)) is

LogODE(zs, f,LogSig
(N)
s,t (X)) := x(1). (4.7)

In fact the function LogODE(zs, f,LogSig
(N)
s,t (X), ·) : [s, t] →W defined by

LogODE(zs, f,LogSig
(N)
s,t (X), τ) := x

(
τ − s

t− s

)
(4.8)

for τ ∈ [s, t] gives an approximation to the solution zτ for τ ∈ [s, t]. Only the vector field f and its (iterated)
Lie brackets are required to construct the log-ODE vector field f̃ defined in (4.5) (see Remark A.10 in [Morrill
et al., 2021b]). This is a consequence of the fact that the log signature of X lies in a certain free Lie algebra;
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see Subsections 2.7, 2.8, and 2.9 in this article, or refer Section 2.2.4 of [Lyons et al., 2007] for the precise
details.

Error estimates for the log-ODE method may be found in [Boutaib et al., 2013] (including the full general
case) where the approximation error of the log-ODE method is quantified in terms of the regularity of the
systems vector field f and control path X (also see Appendix B in [Morrill et al., 2021b] for coverage of the
theory in a simplified setting). These results make use of numerous technical details from rough path theory,
which one may find in either of [Lyons et al., 2007, Friz and Victoir, 2010], for example. The simplified
conclusion of the sophisticated theory is that log-ODEs can approximate CDEs. Moreover, the convergence
rate is controlled by the depth of log signature used and the step size considered (i.e. the size of t − s in our
presentation above). Performance of the log-ODE method can be improved by appropriately selecting both the
step size and the truncation depth [Boutaib et al., 2013].

The more recent work [Bayer et al., 2023a] develops an adaptive algorithm for effective use of the log-
ODE method for solving Rough Differential Equations RDEs. This method involves a problem-dependent way
of determining how to choose the two hyper-parameters governing the log-ODE method; namely, the length of
the time intervals to consider the approximating ODE over, and the depth of log signature to consider. There is
no universal right answer for choosing these parameters; the appropriate choice will depend on the differential
equation through the regularity of the vector field f , the complexity of the paths, and the level of accuracy one
desires.

The error representation formula derived by the authors in [Bayer et al., 2023a] is the main tool for
understanding the relationship between these three aspects for the log-ODE method. In particular, improved
a posteriori uniform error estimates are achieved for a class of RDE approximation schemes in Section 3
of [Bayer et al., 2023a], and it is further established that this class includes the log-ODE method in Section 4
of [Bayer et al., 2023a].

In a very loose sense these estimates can be summarised as follows. Provided the vector field f is smooth
enough, that the time interval over which the approximation is sought is short enough, and that the truncation
level for the log signature is deep enough, the error between the actual solution and the approximation resulting
from the log-ODE method behaves like a power of the p-variation norm of the path X . Quantifying this
statement is a far from trivial task which we make no effort to do; the reader seeking the rigorous detailed
statements is directed to [Bayer et al., 2023a].

We end this section with the following remarks. It follows from the error estimates of [Bayer et al., 2023a]
that one can always guarantee arbitrarily strong estimates for the log-ODE method by working over sufficiently
small time intervals (i.e. by making t− s sufficiently small). But it is not true that on a fixed time interval (i.e.
a fixed value of t − s) that one can obtain arbitrarily strong estimates for the log-ODE method by choosing a
sufficiently high truncation order for the log signature.

5. Computing Signatures
Making use of rough path and signature based techniques only becomes feasible if one is able to explicitly
compute signatures of paths. Software packages for managing such computations have evolved over time.
Initially there were python packages for computing path signatures directly from time series represented as
NumPy arrays of doubles, see either esig [Lyons, ] originating in 2002, or iisignature [Reizenstein and Graham,
2018]. These packages could compute signatures and log signatures, but did not support efficient algorithms
for computing signatures over multiple intervals, or any ability to manipulate the signature or log signature
tensors, e.g. exponentiate the log signature, or apply the Campbell–Baker–Hausdorff product.

Esig and iisignature are tools intended to be used without GPU based acceleration. Differentiable and
GPU based tools with similar functionality, suitable for deep learning, include Signatory [Kidger and Lyons,
2020] and signax [Tong, ]; signatory depends upon PyTorch [Paszke et al., 2019] while signax depends upon
JAX [Bradbury et al., 2018].

A C++ package libalgebra, which has been in development since 2002 and remains in very active de-
velopment, is a powerful and comprehensive CPU based library with tools for manipulating signatures, Lie
elements, tensor algebra elements, and the corresponding dual objects (there are implementations of shuffle
and half shuffle). This templated code has been optimised for floating point coefficients, but importantly also
supports rational coefficients, arbitrary fixed precision coefficients, and even coefficients that are polynomials.
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The former allows one to experiment and identify the precision required to execute high order calculations ef-
fectively. The latter allows one to develop formulae for complex Lie operations, and is also extremely valuable
for debugging when code does not produce expected outcomes.

Esig wrapped some of the most elementary functionality from an early version of libalgebra.
RoughPy [Morley and Lyons, 2024] is a major upgrade on the python interface to managing rough

streams. It allows the construction of a stream object from raw data; one can then query this object over
any interval to get the signature or log signature of the stream over the specified interval. It is efficient and
substantially streamlines the analysis of streamed data. RoughPy has all the functionality of the C++ package
libalgebra mentioned above. In addition, it has automated GPU acceleration through OpenCl support. It wraps
a new C++ library libalgebra-lite that is based upon libalgebra but with a reduced use of templates to allow
better interaction with the python wrapper. In this survey we use RoughPy. The documentation for RoughPy
may be found at roughpy.org. RoughPy may be installed directly via pip (a standard package-management
system used to install and manage software packages written in Python).

In the remainder of this section we give a brief introduction to some of the functionality of RoughPy. A
more in-depth introduction to RoughPy can be found in [Morley and Lyons, 2024], for example.

The main object in RoughPy is the stream object. The data is stored as a stream and, for example,
signatures and log signatures are computed by querying the stream over an interval chosen by the user. The
convention in RoughPy is that intervals are taken to be half-open in the sense that the start point is included but
the end point is not. To be more precise, the python code ‘rp.RealInterval(0.0,2.0)’ would generate the interval
[0, 2) ⊂ R.

The convention of using half-open intervals is just one aspect of the careful way in which RoughPy works
with intervals. The decision to take half-open intervals is done to ensure that RoughPy can handle jumps in the
underlying signal that happen at any particular time whilst still guaranteeing that combining signatures over
adjacent intervals returns the signature over the entire interval determined by their union.

Moreover, for efficiency, an internal representation of a stream involving caching the signature over dyadic
intervals of different resolutions is used. Resolution refers to the length of the finest granularity at which
information about the underlying data is stored. Using the cache to recover the signature over any interval has
logarithmic complexity. If n is the internal resolution of the stream, then recovering the signature over any
interval uses, at most, 2n tensor multiplications. Any event in the stream occurs within one of these finest
granularity intervals. If multiple events occur within the same interval, RoughPy resolves to a more complex
log-signature which correctly reflects the time sequence of the events within the interval.

No query of the stream can see finer resolution than the internal resolution of the stream; a query can
only access information over intervals that are a union of these finest resolution granular intervals. Hence a
query over any interval is replaced by a query over an interval whose endpoints are shifted to be consistent
with the granular resolution. This is obtained by rounding each endpoint to the contained end-point of the
unique half-open granular interval containing this point. In particular, if both the left-hand and right-hand ends
of the interval are contained in the half-open granular interval, the interval is rounded to the empty interval.
Specifying a resolution of 32 or 64 equates to using integer arithmetic.

We first illustrate the use of ’LieIncrementStream’ for the purpose of computing a truncated signature of
a given stream of increments. Suppose N, d ∈ Z≥1 and we have a stream of increments x ∈ S

(
Rd
)

given
by x = (I1, . . . , IN ) for I1, . . . , IN ∈ Rd. Then the python code in Figure 1 computes the signature of x
truncated to depth k ∈ Z≥1.

>>> import numpy as np
>>> import roughpy as rp
>>> x = np.array([ I1, . . . , IN ])
>>> stream = rp.LieIncrementStream.from increments(x , depth = k)
>>> interval = rp.RealInterval(0,N)
>>> sig = stream.signature(interval, depth=k)

Figure 1: Python code to compute the signature of the stream x truncated to depth k using RoughPy

In Figure 1 ‘stream’ is a stream whose (hidden) underlying data are the N increments I1, . . . , IN ∈ Rd

and whose algebra elements are truncated to a maximum depth k. By default the increments are assumed to
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occur at parameter values equal to their row index in the provided data. Thus here I1 is assumed to occur at 0,
I2 is assumed to occur at 1, and so on until IN is assumed to occur at N − 1. Consequently, all parameters are
contained within the interval [0, N) that is considered in Figure 1 via the code ‘interval = rp.RealInterval(0,N)’.

Instead of manually providing a depth when creating the stream ’stream’, we could provide a context.
A context is used to tell RoughPy the desired shape that streams should be assumed to have. Thus the same
output achieved in Figure 1 could be obtained using the python code in Figure 2.

>>> import numpy as np
>>> import roughpy as rp
>>> x = np.array([ I1, . . . , IN ])
>>> context = rp.get context(width = d, depth = k, coeffs = rp.DPReal)
>>> stream = rp.LieIncrementStream.from increments(x , ctx = context)
>>> interval = rp.RealInterval(0,N)
>>> sig = stream.signature(interval, ctx = context)

Figure 2: Python code to compute the signature of the stream x truncated to depth k using RoughPy via a
prescribed context.

The ’context’ defined in Figure 2 has width d (since each entry in the stream x is an element in Rd), depth
k (since we want to truncate to depth k), and real coefficients (since we are working over the reals).

The output ’sig’ in both Figures 1 and 2 is a FreeTensor of width d, depth k, and ctype ’DPReal’. More-
over, when printed, ’sig’ returns both the values of the coefficients of the truncated signature and the basis
element to which each coefficient corresponds. We illustrate this via the following explicit example. Fix
d = 2, k = 3, and consider the stream of increments x = ((1, 1)) ∈ S

(
R2
)
. Then we compute the signature

of this stream x truncated to depth 3 using the python code in Figure 3.

>>> import numpy as np
>>> import roughpy as rp
>>> x = np.array([ [1.0,1.0] ])
>>> context = rp.get context(width=2,depth=3, coeffs = rp.DPReal)
>>> stream = rp.LieIncrementStream. from increments(x, ctx = context)
>>> interval = rp.RealInterval(0,1)
>>> sig = stream.signature(interval, ctx = context)
>>> sig
FreeTensor(width=2, depth=3, ctype=DPReal)
>>> print(sig)
{ 1() 1(1) 1(2) 0.5(1,1) 0.5(1,2) 0.5(2,1) 0.5(2,2) 0.166667(1,1,1)
0.166667(1,1,2) 0.166667(1,2,1) 0.166667(1,2,2) 0.166667(2,1,1)
0.166667(2,1,2) 0.166667(2,2,1) 0.166667(2,2,2) }

Figure 3: Python code to compute signature of stream x ∈ S
(
R2
)

truncated to depth 3. Including the returned
output of the commands ’sig’ and ’print(sig)’.

As expected, ’sig’ is a FreeTensor of width 2, depth 3, and ctype DPReal. The output returned by the
command ’print(sig)’ is the collection of coefficients determining the signature truncated to depth 3 along with
the word (in brackets) determining which coordinate iterated integral each coefficient represents. For example,
the entry 0.5(1, 2) means that the value of the coordinate iterated integral corresponding to the word (1, 2)
is 0.5. We recall from Subsection 2.8 that in this simple setting this is just the value of the iterated integral∫ 1

0

∫ y

0
dxdy where we have associated the canonical x and y coordinates of R2 with ’1’ and ’2’ respectively.

If one was instead interested in the log signature of the stream x ∈ S
(
R2
)
, inserting the line of code

>>> logsigA = stream.log signature(interval,ctx=context) (5.1)

into the code presented in Figure 3 would return the log signature truncated to depth 3. We could also compute

36

https://roughpy.org/user/basics.contexts.html
https://roughpy.org/user/basics.free_tensors.html


5 Computing Signatures Terry Lyons & Andrew D. McLeod

the log signature by directly taking the logarithm of the already computed signature. That is, we could use the
python code

>>> logsigB = sig.log() (5.2)

to compute the desired log signature. However, there is a distinction between the outputs logsigA and logsigB
of the approaches (5.1) and (5.2) respectively. The respective outputs are illustrated in Figure 4.

>>> logsigA
Lie(width=2, depth=3, ctype=DPReal)
>>> print(logsigA)
{ 1(1) 1(2) }
>>> logsigB
FreeTensor(width=2, depth=3, ctype=DPReal)
>>> print(logsigB)
{ 1(1) 1(2) -2.77556e-17(1,1,1) -2.77556e-17(1,1,2)
-2.77556e-17(1,2,1) -2.77556e-17(1,2,2) -2.77556e-17(2,1,1)
-2.77556e-17(2,1,2) -2.77556e-17(2,2,1) -2.77556e-17(2,2,2) }

Figure 4: The outputs resulting from the commands ’logsigA’, ’print(logsigA)’, ’logsigB’ and ’print(logsigB)’
where logsigA and logsigB are the results of the python code in (5.1) and (5.2) respectively.

The first difference is that logsigA is a Lie element whilst logsigB is a FreeTensor. The essential difference
is that a Lie element is in the Free Lie algebra generated by ’1’ and ’2’ and recorded with respect to a Hall
basis, whilst a FreeTensor is in the Tensor algebra (cf. Subsection 2.7) recorded with respect to the basis
generated by all string combinations of ’1’ and ’2’.

The second difference is a result of numerical errors being introduced due to truncation. Instead of taking
log of the full signature tensor, we are only taking log of the signature truncated to depth 3 to compute logsigB.
Consequently numerical errors enter the computations. In particular, the non-zero coefficients for the basis
elements involving three entries from {1, 2} in Figure 4, all of magnitude 10−17, should all be zero.

We can also go from log signatures to signatures by exponentiation of a log signature. However, in order
to do so we must first convert the log signature from a Lie element to a FreeTensor, and then exponentiate. As
an example, consider a stream of increments x = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) ∈ S

(
R3
)
. Then the following

python code computes the signature of x truncated to depth 2 both directly and by taking the exponential of
the log signature.

As illustrated in Figure 5, both methods of computing the signature result in the same output for this
example. It is worth remarking that the ’lie to tensor’ function requires a context to inform it about the shape
of the input and output.

We can now provide the full illustration of the signatures ability to record the order of events as commented
on in Subsection 2.2. For this purpose we recall the toy problem considered in Subsection 2.2. Let N ∈ Z≥1

and suppose we have a finite collection of time series, with each time series consisting of 2 channels and
N samples. Suppose that each time series x has the following structure. If x =

{
(x1,i, x2,i)

}N
i=1

then the
following properties are true.

• For every i ∈ {1, . . . , N} we have x1,i, x2,i ∈ {0, 1}.

• For j ∈ {1, 2} if i ∈ {1, . . . , N} and xj,i = 1, then for every k ∈ {i, . . . , N} we have xj,k = 1.

• At least one of x1,N and x2,N is equal to 1.

Consider the task of determining which channel is the first to change from 0 to 1.
Recall from Subsection 2.5 that viewing each time series x as an element in R2N and trying to learn a

quadratic polynomial capable of determining which channel is the first to change from 0 to 1 involves consid-
ering 1 + 3N + 2N2 linearly independent quadratic polynomials. If we consider N = 3600 then we end up
dealing with 25930801 linearly independent quadratic polynomials.

But computing the depth 2 signature will determine which channel changes first. Observe that there
are only two possible options. Either the stream values go in the order (0, 0) → (1, 0) → (1, 1) or the
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>>> import numpy as np
>>> import roughpy as rp
>>> x = np.array([ [1.0,0.0,0.0] , [0.0,1.0,0.0] , [0.0,0.0,1.0] ])
>>> context = rp.get context(width=3,depth=2, coeffs = rp.DPReal)
>>> stream = rp.LieIncrementStream. from increments(x, ctx = context)
>>> interval = rp.RealInterval(0,1)
>>> sigA = stream.signature(interval, ctx = context)
>>> sigA
FreeTensor(width=3, depth=2, ctype=DPReal)
>>> print(sigA)
{ 1() 1(1) 1(2) 1(3) 0.5(1,1) 1(1,2) 1(1,3) 0.5(2,2) 1(2,3) 0.5(3,3) }
>>> logsig = stream.log signature(interval, ctx = context)
>>> logsigT = context.lie to tensor(logsig)
>>> sigB = logsigT.exp()
>>> sigB
FreeTensor(width=3, depth=2, ctype=DPReal)
>>> print(sigB)
{ 1() 1(1) 1(2) 1(3) 0.5(1,1) 1(1,2) 1(1,3) 0.5(2,2) 1(2,3) 0.5(3,3) }

Figure 5: Python code to compute signature of stream x ∈ S(R3) truncated to depth 2 both directly and by
computing the exponential of the log signature.

order (0, 0) → (0, 1) → (1, 1). Hence the channels of the increments are either equivalent to the stream
x1 := ((1, 0), (0, 1)) ∈ S

(
R2
)

or to the stream x2 := ((0, 1), (1, 0)) ∈ S
(
R2
)
. The RoughPy output when

the signature of x1 truncated to depth 2 is computed is{
1() 1(1) 1(2) 0.5(1, 1) 1(1, 2) 0.5(2, 2)

}
. (5.3)

The RoughPy output when the signature of x1 truncated to depth 2 is computed is{
1() 1(1) 1(2) 0.5(1, 1) 1(2, 1) 0.5(2, 2)

}
. (5.4)

We immediately see that the channel that is first to change from 0 to 1 is captured by the depth 2 coordinate
iterated integrals corresponding to the words (1, 2) and (2, 1). If the x-coordinate is the first to change from 0
to 1 then (5.3) illustrates that the resulting signature has a coefficient of 1 corresponding to the word (1, 2) and a
coefficient of 0 corresponding to the word (2, 1). If the y-coordinate is the first to change from 0 to 1 then (5.4)
illustrates that the resulting signature has a coefficient of 0 corresponding to the word (1, 2) and a coefficient of
1 corresponding to the word (2, 1). Consequently the 7 real numbers forming the coefficients of the truncation
of the signature to depth 2 are sufficient to determine the order. This is independent of the number of samples
N , and dealing with 7 terms is simpler than dealing with 1 + 3N + 2N2 quadratic polynomials.

It is possible to construct streams by providing the raw data of Lie increments with higher order terms by
specifying the width. For example, consider the stream of increments x =

(
(1, 1, 1), (1,−3, 4), (0, 1, 2)

)
∈

S
(
R3
)
. Consider taking width 2 and depth 2 so that the elements of a Lie element will have keys (1, 2, [1, 2]).

Then the python code in Figure 6 will construct a stream from x whose underlying Lie increments are width
2, depth 2.

As a final example, consider the stream y =
{
(1, 1, 2.5, 0.75,−1.5), (1.2, 3.4,−2.5, 0.98, 0.4)

}
∈ S

(
R5
)
.

Suppose we want to determine a Lie element of width 2 and depth 3 from the stream y, which will have keys
(1, 2, [1, 2], [1, [1, 2]], [2, [1, 2]]). Then the python code in Figure 7 will construct a stream from y whose un-
derlying Lie increments are width 2, depth 3.

It is both informative and instructive to work through some examples of using signatures within a relatively
simple machine learning context. There are a number of demonstration notebooks available via the DataSig
website. The Introduction to Path Signatures python notebook is designed to familiarise the user with the
key concepts. Primarily aimed at data scientists and machine learning practitioners, it uses simple illustrative
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>>> import numpy as np
>>> import roughpy as rp
>>> x = np.array([ [1.0,1.0,1.0] , [1.0,-3.0,4.0] , [0.0,1.0,2.0] ])
>>> context = rp.get context(width=2,depth=2, coeffs = rp.DPReal)
>>> stream = rp.LieIncrementStream. from increments(x, ctx = context)
>>> interval1 = rp.RealInterval(0,1)
>>> interval2 = rp.RealInterval(0,2)
>>> interval3 = rp.RealInterval(0,3)
>>> logsig1 = stream.log signature(interval1, ctx = context)
>>> logsig2 = stream.log signature(interval2, ctx = context)
>>> logsig3 = stream.log signature(interval3, ctx = context)
>>> print(logsig1)
{ 1(1) 1(2) 1([1,2]) }
>>> print(logsig2)
{ 2(1) -2(2) 3([1,2]) }
>>> print(logsig3)
{ 2(1) -1(2) 6([1,2]) }

Figure 6: Python code to use the stream x ∈ S
(
R3
)

to prescribe the depth 2 information. Includes outputs
resulting from computing and printing the log signature over a range of intervals.

>>> import numpy as np
>>> import roughpy as rp
>>> y = np.array([ [1.0,1.0,2.5,0.75,-1.5] , [1.2,3.4,-2.5,0.98,0.4] ])
>>> context = rp.get context(width=2,depth=3, coeffs = rp.DPReal)
>>> stream = rp.LieIncrementStream. from increments(x, ctx = context)
>>> interval1 = rp.RealInterval(0,1)
>>> interval2 = rp.RealInterval(0,2)
>>> logsig1 = stream.log signature(interval1, ctx = context)
>>> logsig2 = stream.log signature(interval2, ctx = context)
>>> print(logsig1)
{ 1(1) 1(2) 2.5([1,2]) -0.75([1,[1,2]]) -1.5([2,[1,2]])}
>>> print(logsig2)
{ 2.2(1) 4.4(2) 1.1([1,2]) -2.55667([1,[1,2]]) -7.04([2,[1,2]]) }

Figure 7: Python code to use the stream y ∈ S
(
R5
)

to prescribe the depth 3 information. Includes outputs
resulting from computing and printing the log signature over a range of intervals.

examples to explore the behaviour of path signatures and of the affect that various stream transformations
(including those covered in Section 2.5) have on the signature of a stream.

The Handwritten Digit Classification python notebook demonstrates the use of path signatures (via esig)
for handwritten digit classification. Given sequences of pen strokes contained in the MNIST sequence dataset,
corresponding to the MNIST handwritten digit data set by Edwin D. De Jong, path signatures of transfor-
mations of these streams are computed and incorporated as features into a linear classifier. The notebook
additionally explores combining the features with unsupervised classification techniques.

6. Expected Signature
The signature provides a summary of a path that is adequate for predicting its effect on a broad range of different
systems whilst managing to discard irrelevant information. Frequently we are interested in understanding
more than a single path at a time; that is, we want to adequately summarise a collection of paths in order to
predict their collective effect on systems. The paths traced out by multiple points on an object will give more
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information about the objects trajectory and motion than a single point. The effect of Covid-19 restrictions
on the reproduction (R) number of the virus are more accurately predicted knowing the levels of compliance
of numerous people across several locations, as opposed to relying on the level of compliance of a single
individual.

A distribution can summarise a collection of paths; for example, if M ∈ Z≥1 then a finite collection
{γ1, . . . , γM} ⊂ V1([a, b], V ) can be summarised by the empirical measure δ := 1

M

∑M
j=1 δγj . We would like

to summarise distributions in an analogous manner to how the signature summarises paths. That is, loosely
speaking, compress the information whilst retaining enough detail to distinguish between different distribu-
tions. For paths the signature achieves this by filtering out the parameterisation noise (cf. Section 3). Typi-
cally, summarising distributions requires requires restricting the class of distribution considered by imposing
additional constraints (cf. Brownian Motion, Markov processes etc). It turns out that the signature allows one
to summarise all distributions without restriction.

Let p ∈ R≥1 and let PΩp(V ) denote the space of (Borel) probability measures on the space of p-rough
paths Ωp(V ). Then the Expected Signature is the map Sp : PΩp(V ) → T ((V )) defined by

Sp(µ) := Eµ

[
S(X)

]
=

∞∏
n=0

Eµ

[
Sn(X)

]
. (6.1)

The expected signature defined in (6.1) allows us to define the expected signature of a stochastic process.
For this purpose, suppose that Xt is a stochastic process on V for t ∈ [0, 1] under a probability space

(N ,P). First suppose that p ∈ [1, 2) and that for P-almost every ω ∈ N the path [0, 1] → V defined
by s 7→ Xs(ω) is in Vp([0, 1], V ). Let Q : N → Vp([0, 1], V ) be the map taking ω ∈ N to the path(
s 7→ Xs(ω)

)
s∈[0,1]

. The push-forward Q∗P of the measure P is an element in PVp([0, 1], V ). Recalling from
Subsection 2.9 that p ∈ [1, 2) means that p-rough paths in Ωp(V ) are the signatures of paths in Vp([0, 1], V ),
we may view Q∗P as an element in PΩp(V ). Thus we can make sense of the expected signature of Xt as
Sp
(
Q∗P

)
, with it being common to abuse notation and write Sp(X). When the value of p ∈ [1, 2) is either

clear from the context or not of particular importance, it is common to drop it from the notation and write S(X)
for the expected signature of the process Xt.

If the sample paths of the stochastic process are only of finite p-variation for p ≥ 2 then making sense
of the expected signature of the process is more involved. Suppose that this is now the case, and assume that
for P-almost every ω ∈ N there are, for i ∈ {2, . . . , ⌊p⌋}, functions A[i](ω) : ∆[a,b] → V ⊗i such that the
functional X(ω) : ∆[a,b] → T (⌊p⌋)(V ) defined for (s, t) ∈ ∆[a,b] by

Xs,t(ω) :=
(
1, Xt(ω)−Xs(ω), As,t[2](ω), . . . , As,t[⌊p⌋](ω)

)
∈ T (⌊p⌋)(V ) (6.2)

satisfies that X(ω) ∈ Ωp(V ). Let Q : N → Ωp(V ) be the map taking ω ∈ N to the p-rough path X(ω) ∈
Ωp(V ). The push-forward Q∗P of the measure P is an element in PΩp(V ). Consequently we can make sense
of the expected signature of Xt as Sp(Q∗P) with it being common to abuse notation and write Sp(X). When
the value of p ≥ 2 is either clear from the context or not of particular importance, it is common to drop it from
the notation and write S(X) for the expected signature of the process Xt.

In this latter case we observe that the increments of the process Xt are no longer sufficient to determine
its expected signature. Instead, we are required to additionally prescribe its higher order properties such as its
area. A standard Brownian motion B : [0, T ] → Rd for some T > 0 provides an instructive example. Given a
p ∈ (2, 3) it is known that the process t 7→ Bt possesses finite p-variation. Consequently, in order to define its
expected signature we must first make a choice of depth 2 term; that is, we need to prescribe a suitable function
∆[0,T ] → T (2)(Rd).

Both the Itô 2-multiplicative functional (cf. (2.70)) and the canonical Brownian rough path (cf. (2.75))
defined in Subsection 2.9 provide choices of depth 2 terms that result in distinct p-rough paths whose depth 1
terms are given by the increments Bt−Bs of the Brownian motion. The resulting expected signatures are both
candidates for the expected signature of the Brownian motion. Without making a choice of depth 2 term there
is no canonical way to choose which one should be taken to be the expected signature of the Brownian motion
Bt.
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The expected signature of a process Xt is the natural generalisation of the moments of the process Xt.
Moreover, in [Bonnier and Oberhauser, 2020], it is shown that the Log Expected Signature log S(X) provides
the natural generalisation of the cumulants of Xt.

Beginning with the work of Fawcett in his thesis [Fawcett, 2003], there has been a large number of works
investigating the relationship between the expected signature S(X) and the law of S(X). Fawcett originally
proved that if the measureQ∗P is compactly supported, then the law of S(X) is uniquely determined by S(X).
Subsequently, it has been established that if the radius of convergence of the power series

∑∞
n=0 z

nE||Sn(X)||
is infinite, then the expected signature uniquely determines the law of S(X) [Chevyrev, 2014]. Further refine-
ments to the extent to which the expected signature of a stochastic process Xt determines the law of Xt may
be found in [Chevyrev and Lyons, 2016, Chevyrev and Oberhauser, 2022].

For Brownian motion Bt with Lévy area (i.e. the canonical Brownian rough path defined in Subsection
2.9; cf. (2.75)) on a boundedC1 domain Ω ⊂ Rd, the investigation of the finiteness of the radius of convergence
for the power series

∑∞
n=0 z

nE||Sn(Bt)|| was initiated in [Lyons and Ni, 2015], where the authors established
that the radius of convergence was strictly positive. In [Chevyrev and Lyons, 2016] it is proven that this radius
of convergence is infinite, provided Bt is considered up to a fixed finite time T > 0. Consequently, for such
Brownian motions, the expected signature determines the law. But recently it has been established that this
is not true for the exit time of Brownian motion in two-dimensions. More concretely, if Bz

t is the standard
Brownian motion in R2 started at z ∈ B2(0, 1) and stopped at the first time it hits the boundary ∂B2(0, 1), then
radius of convergence of the corresponding power series is finite; see [Boedihardjo et al., 2021] for full details.

Of greater interest from the machine learning perspective is that the expected signature provides a sys-
tematic way to describe probability measures on paths in terms of their effects. An early breakthrough was
the realisation that complex path measures (such as the Wiener measure) can be effectively approximated by
a measure supported on finitely many paths having the same expected signature on a truncated tensor algebra
T (n)(V ) [Lyons and Victoir, 2004, Litterer and Lyons, 2007, Lyons and Yang, 2013]. Unlike the Martingale
Problem approach originating in [Stroock and Varadhan, 1997], there is no restriction on the probability mea-
sures considered.

A result from [Chevyrev and Oberhauser, 2022] establishes that the expected signature essentially uniquely
determines distributions on compact subsets of PV1([a, b], V ). It is proven in Theorem 5.6 of [Chevyrev and
Oberhauser, 2022] that when restricted to compact subsets, the expected signature is injective up-to tree-like
equivalence (see Appendix B of [Chevyrev and Oberhauser, 2022] for full details). The important point from
our perspective is that if the set of tree-like paths is removed from V1([a, b], V ), then the expected signature
is injective on compact subsets of PV1([a, b], V ). Let C([a, b], V ) ⊂ V1([a, b], V ) denote the subset resulting
from removing all tree-like paths.

The work [Lemercier et al., 2021] establishes a universality property for the expected signature analogous
to the universality property of the signature itself (cf. Theorem 3.3). For the signature, this universality is that,
on compact subsets of path-space, the components of the signature (i.e. the coordinate iterated integrals) span
the set of continuous functions. An almost identical result turns out to be true for the space C0

(
PK
)
, where

K ⊂ C([a, b], V ) is compact and PK denotes the space of Borel probability measures on K, provided we first
lift the expected signature map so that it maps a probability measure µ to a path [a, b] → T ((V )), rather than a
single element of T ((V )).

Before introducing the lift of the expected signature map to the so-called Pathwise Expected Signature
ΦPath : PC([a, b], V ) → V1

(
[a, b], T ((V ))

)
, we first fix a choice of topology on the space of Borel probability

measures PK on a compact subset K ⊂ C([a, b], V ). For this purpose we consider the following notion of
weak convergence in PK.

Let C0(K) denote the space of real-valued continuous functions K → R. Then any ν ∈ PK can be
viewed as a bounded linear functional C0(K) → R by defining ν[φ] :=

∫
K φ(z)dν(z) for φ ∈ C0(K). Then

a sequence {µn}∞n=1 ⊂ PK is said to weakly converge to µ ∈ PK if for every f ∈ C0(K) we have that
µn[f ] → µ[f ] as n → ∞. It is established in [Lemercier et al., 2021] (cf. Theorem A.1) that the expected
signature determines a weakly continuous map PK → T ((V )) where T ((V )) is equipped with the topology
induced by

〈
·, ·
〉
T ((V ))

introduced in Subsection 2.7.

The Pathwise Expected Signature is the map ΦPath : PC([a, b], V ) → V1
(
[a, b], T ((V ))

)
defined by

ΦPath(µ)t := Eµ

[
Sa,t(X)

]
so that ΦPath(µ)b = S(µ). (6.3)
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It is established in [Lemercier et al., 2021] (cf. Theorem A.4) that if K ⊂ C([a, b], V ) is compact, then the
pathwise expected signature determines a weakly continuous map PK → V1([a, b], T ((V ))).

The coordinate iterated integrals forming the components of Sa,b

(
ΦPath(µ)

)
then span C0

(
PK
)

for
compact subsets K ⊂ C([a, b], V ). That is, any weakly continuous function on PK can be uniformly well-
approximated by a linear combination of the terms in the signature of the pathwise expected signature.

Theorem 6.1 (Expected Signature Universality; Theorem 3.2 in [Lemercier et al., 2021]). Let C([a, b], V ) ⊂
V1([a, b], V ) denote the subset resulting from removing all tree-like paths. Suppose K ⊂ C([a, b], V ) is com-
pact and consider a weakly continuous function F : PK → R. Then for any ε > 0 there exists a truncation
level m ∈ N and real coefficients

{
αk( J) | k ∈ {0, . . . ,m} and J ∈ {1, . . . , d}k

}
⊂ R such that for any

µ ∈ PK we have ∣∣∣∣∣F (µ)−
m∑

k=0

∑
J∈{1,...,d}k

αk( J)Sa,b (ΦPath(µ))
J

∣∣∣∣∣ < ε. (6.4)

The components Sn
a,b

(
ΦPath(µ)

)
have the factorial decay associated with all signature components (cf. The-

orem 3.2). Consequently, via the same reasoning used for the signature of a path in Section 3, the pathwise
expected signature gives a universal feature map providing a graded set of feature functions (the coordinate
iterated integrals of S

(
ΦPath(µ)

)
) that are detailed enough to essentially uniquely determine the distribution

µ. Again the decay of the coordinate iterated integrals tells us that the more easily computed lower order terms
will typically be more informative than the higher order ones. The pathwise expected signature provides a
route to tackling distribution regression. This is elaborated on in Section 13 of this article.

The Drone Identification python notebook is an instructive example of using expected path signatures in
a classification task that may be worked through by the reader. In the notebook a classifier for identifying
drones is constructed based on the following assumption. When a radio pulse is reflected off a drone, the
reflected signal received back by the observer is a combination of the reflection caused by the drone’s body and
the reflection caused by the drone’s propeller. The expected path signature is used to characterise the random
behaviour in reflected signals. Estimates of expected path signatures are used as feature vectors for the task of
distinguishing between drone and non-drone objects. The task of predicting the number of rotations per minute
(rpm) of a drone’s propeller is additionally considered.

7. Truncation Order Selection

Path signatures live in the infinite-dimensional tensor algebra T ((V )). Consequently, applications seemingly
require the selection of some finite sub-collection of terms. The factorial decay of the components of the
signature (cf. Theorem 3.2) means it is common to choose the first N terms since these will typically be the
largest. Recall that the first N terms of a signature S(x) are called the truncated signature of depth N and
denoted by S(N)(x) := ΠN (S(x)).

From a theoretical point of view this is not an issue. Indeed, on compact subsets, we know that provided
a sufficiently large truncation depth N is chosen, we are able to approximate continuous functions by linear
combinations of the coordinate iterated integrals of the truncated to depth N signatures (cf. Theorem 3.3).
However, from a practical perspective there is a potential problem.

The theoretical guarantees provide no upper bound on the truncation depth required. In particular, a
large value of N may be required to adequately capture continuous functions with non-trivial dependence on
higher order signature terms. This can become problematic due to the exponential growth in the number of
components in each term of a signature with respect to the depth. For example, suppose V is d-dimensional for
some integer d ∈ Z≥2. Then given an integer k ∈ Z≥1, the depth k term of a signature of a path in V consists
of dk components. Consequently, the truncation of the signature to depth N involves

1 + d+ . . .+ dN =
dN+1 − 1

d− 1

which quickly becomes intractable for moderately sized values of d and N . Despite signatures compressing
the information of a path down to a countable graded collection of statistics, further compression is required to
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enable directly learning a suitable linear combination.
Introducing a suitable augmentation of the dataset before taking the signature offers a solution to this

problem. Recall (cf. Section 2.5) that by augmenting the dataset ΩS(V ), we mean considering a map Θ : V →
W for some Banach space W . Any stream x ∈ S(V ) can be transformed to be a stream in S(W ) via the
element-wise application of the map Θ. Hence we can work with the augmented dataset ΩS(W ) ⊂ S(W )
resulting from using Θ to transform each stream in ΩS(V ) to a stream in S(W ).

If we takeW := V ×U and Θ(v) := (v, φ(v)) for a suitable φ : V → U , the information from the higher
order terms of the signature of the stream ΩV is contained within the signature of the stream Θ(ΩV ) truncated
to a manageable depth. A common situation is that the Banach space V is Rd for some d ∈ Z≥1, and that the
Banach space U is chosen to be Re for some e ∈ Z≥1 so that W = Rd+e.

We have already seen several explicit examples of possible augmentations in Section 2.5, and each aug-
mentation offers different benefits. A Lead-Lag augmentation aides the study of a streams variance via its
signature (see [Chevyrev and Kormilitzin, 2016]), the invisibility-reset augmentation (cf. (2.21)) ensures that
the signature of the transformed stream will contain information on the initial position which is otherwise lost
due to the translation-invariance of the signature, and the time augmentation (cf. (2.17)) introduces a monotonic
coordinate that can ensure the resulting path is uniquely determined by its signature (cf. Theorem 3.1).

Many works choose the augmentation map Θ via experimentation with several explicit options, see
[Chevyrev and Oberhauser, 2022, Király and Oberhauser, 2019] for example. It is proposed in [Kidger et al.,
2019] that the augmentation map should be data dependent and be learnt, i.e to consider Θ = Θθ for a trainable
parameter θ. This removes any limitations on the form of Θ, allowing complicated nonlinear influences from
the higher order signature terms to be accurately captured. In particular, the augmentation may form part of a
Neural Network.

Initially inspired by the biological workings of a human brain, a neural network is a collection of func-
tions (called nodes) that are arranged in layers. Each layer connects to its neighbours, and the output of a
layer is used as the input data for the next layer. Typically, each node has an associated activation function
controlling whether or not the nodes function is run depending on the received input. Empirically, simple
initial inputs and a large number of layers works better than more complex initial specifications teamed with
fewer layers. Mathematically, neural networks may be thought of as linear functions composed with nonlinear-
ity. Whilst complicated nonlinear transformations are allowed between layers, all optimisation happens at the
layers themselves, where we are always seeking a linear combination of a specified collection of functions. De-
tailed and thorough introductions to neural networks may be found in [Géron, 2022], [Heaton, 2011], [Gurney,
1997], for example.

Recall that, on compact subsets, continuous functions of paths can be arbitrarily well-approximated by
linear combinations of coordinate iterated integrals (cf. Theorem 3.3). In this sense, the signature is a universal
nonlinearity of streams, which makes it a candidate for the nonlinear transformation between layers within a
neural network. Using the signature in this manner requires adapting the signature to map a stream to a stream,
rather than mapping a stream to statistics with no obvious stream-like properties. In [Kidger et al., 2019] this
is achieved by lifting the input stream ΩV to a stream of streams, making use of the observation that a path
X : [a, b] → V induces a path-of-paths in path space by mapping t 7→ X|[a,t] for t ∈ [a, b].

This idea makes it easy to see that a stream (x1, . . . , xk) can induce the stream-of-streams given by(
(x1, x2), (x1, x2, x3), . . . , (x1, . . . , xk)

)
, for example. But there is no unique way to induce a stream-of-

streams from a stream. A generic lift l : S(V ) → S(S(V )) can be considered, with the signature of l(X)
for X ∈ S(V ) to be the stream of signatures of the components. More precisely, if X ∈ S(V ) then l(X) =
(l(X)1, . . . , l(X)m) for some m ∈ N, where l(X)j ∈ S(V ) for each j ∈ {1, . . . ,m}. The signature of l(X)

is then taken to be the stream
(
S
(
l(X)1

)
, . . . , S

(
l(x)m

))
∈ S

(
T ((V ))

)
. The particular choice of lift will be

determined by the modelling assumptions. Several example lifts l may be found in [Kidger et al., 2019].
Having modified the signature to transform a stream to a stream, the authors define a deep signature model

in which several learnt augmentation steps are implemented. The output of each layer is a linear function of
the signature, and the signature of this forms the input functions for the next layer. The shuffle product plays
a vital role in understanding how to compute S(L(S(X))) for a linear function L [Lyons et al., 2007]. Two
simple architectures involving signature layers are shown in Figure 8, and full details of the proposed models
can be found in [Kidger et al., 2019].
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Figure 8: Two simple architectures illustrating the possible inclusion of a signature layer - Figure 1 in [Kidger
et al., 2019]. Reproduced with permission. Copyright held by authors of [Kidger et al., 2019].

The required computation and back-propagation of the signature transform is efficiently managed by the
Signatory package [Kidger and Lyons, 2020]. The resulting model obtained in [Kidger et al., 2019] is compared
with several other techniques via the task of learning the Hurst parameter H of a fractional Brownian motion
BH . That is, to learn the map xH 7→ H for an implementation

xH =
((
t0, B

H
t0

)
, . . . ,

(
tn, B

H
tn

))
∈ S

(
R2
)

(7.1)

for some realisation of BH . Empirical evidence suggests fractional Brownian motions are closely linked with
financial market data [Gatheral et al., 2018], and estimating the Hurst parameter is a non-trivial task [Lacasa
et al., 2009].

A total of 700 samples was considered, with 600 being used as the training set and the remaining 100
forming the test set. Each individual sample was an instance of fractional Brownian motion, sampled at 300
time steps of the interval [0, 1], with Hurst parameters in the range [0.2, 0.8]. Every model was trained for 100
epochs with the loss function take to be the mean squared error (MSE). The results are summarised in the Table
1.

Model Mean Variance
Rescaled Range 7.2× 10−2 3.7× 10−3

LSTM 4.3× 10−2 8.0× 10−3

Feedforward 2.8× 10−2 3.0× 10−3

Neural-Sig 1.1× 10−2 8.2× 10−4

GRU 3.3× 10−3 1.3× 10−3

RNN 1.7× 10−3 4.9× 10−4

DeepSigNet 2.1× 10−4 8.7× 10−5

DeeperSigNet 1.6× 10−4 2.1× 10−5

Table 1: Final test MSE for the different models - Variant of Table 1 in [Kidger et al., 2019]

The Rescaled Range method is a mathematically derived method involving no learning, see [Hurst, 1951].
The Long Short-Term Memory (LSTM), GRU and Recurrent Neural Network (RNN) models provide baselines
in the context of recurrent neural networks. The Neural-Sig model provides a baseline in the context of signa-
tures, with only a single layer of augmentation being used. The DeepSigNet and DeeperSigNet are both deep
signature models featuring multiple layers of augmentation. Whilst the traditional signature based methods
perform worse than the recurrent models, the deep signature models out perform all other models by at least an
order of magnitude. Full details of this comparison and the baseline models may be found in section 4.2 and
appendix B.2 of [Kidger et al., 2019].
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8. Signature Kernel

The signature provides a universal feature map embedding the dataset ΩS(V ) into the tensor algebra T ((V )).
By considering the inner product we equipped the tensor algebra T ((V )) with in Section 2.7, we can define
the Signature Kernel

Kx,y(s, t) :=
〈
Sa,s(x), Sc,t(y)

〉
T ((V ))

(8.1)

for x ∈ V1([a, b], V ), y ∈ V1([c, d], V ), s ∈ [a, b] and t ∈ [c, d].
The completion H(V ) := T ((V )) is a Hilbert space, meaning that the signature provides us with a kernel.

Recall that we consider a labelled data set Ω ⊂ S(V ) × R given, for some M ∈ Z≥1, by Ω =
{
( xk, yk) ∈

S(V ) × R | k ∈ {1, . . . ,M}
}

, and we take ΩS(V ) ⊂ S(V ) to be the projection of Ω onto S(V ). Moreover
we assume that each stream x ∈ ΩS(V ) consists of incremental data. For each k ∈ {1, . . . ,M} let Γk denote
the contour resulting from the concatenation of the entries in the stream xk, and choose a parameterisation
γk ∈ V1([0, 1], V ) of Γk.

Then we can consider the function KΩS(V )
: ΩS(V ) × ΩS(V ) → R≥0 given by

KΩS(V )
( xi, xj) := Kγi,γj (1, 1) =

〈
S0,1(γi), S0,1(γj)

〉
T ((V ))

(8.2)

for i, j ∈ {1, . . . ,M}. In [Salvi et al., 2021] the authors consider the use of the kernel function KΩS(V )
,

defined in (8.2), for regression tasks. Via their observation that the function (s, t) 7→ Kx,y(s, t) defined in
(8.1) satisfies a linear second-order hyperbolic PDE (a Goursat problem [Lees, 1960]), the authors introduce
a method to use the full signature transform for regression tasks without any truncation via use of the kernel
function KΩS(V )

. The primary aim for the remainder of this section is to summarise this approach developed
in [Salvi et al., 2021].

Kernels on truncated signatures are considered in [Király and Oberhauser, 2019] via the development
of a technique for transforming a kernel on V to a kernel on S(V ). The approach followed in [Király and
Oberhauser, 2019] is to use truncated kernels (in which the full signature is replaced by its truncation to some
finite depth) to approximate the full untruncated signature kernel. For paths of bounded variation, there are
efficient algorithms to compute this truncated kernel, with the practical consequences explored in [Toth and
Oberhauser, 2020].

In [Salvi et al., 2021] the full untruncated signature kernel is studied. It is established that for two con-
tinuously differentiable paths x and y, the full untruncated signature kernel Kx,y(·, ·) solves the following
PDE.

Theorem 8.1 (Signature Kernel Solves PDE; Theorem 2.5 in [Salvi et al., 2021]). Let I = [a, b] and J = [c, d]
be compact intervals and suppose x ∈ C1(I;V ) and y ∈ C1(J ;V ) for some Banach space V . Consider the
bilinear form K : I × J → R defined by

Kx,y(s, t) :=
〈
Sa,s(x), Sc,t(y)

〉
T ((V ))

. (8.3)

Then Kx,y(·, ·) solves the following linear second-order hyperbolic PDE

∂2Kx,y

∂s∂t
=
〈
ẋs, ẏt

〉
Kx,y (8.4)

with initial conditions Kx,y(a, ·) = Kx,y(·, c) = 1 and where ẋs :=
dxp

dp

∣∣∣
p=s

and ẏt :=
dyq

dq

∣∣∣
q=t

.

The PDE in (8.4) is an example of a Goursat problem, for which existence and uniqueness results originate
in [Lees, 1960]. Consequently, for sufficiently regular paths, the existence and uniqueness of K solving (8.3)
is guaranteed (cf. Theorem 3.1 in [Salvi et al., 2021]). The content of Theorem 8.1 makes sense for rougher
paths. That is, the PDE (8.4) can be made sense of for paths x and y of lower regularity by considering its
integral form

Kx,y(s, t) = 1 +

∫ s

a

∫ t

c

〈
Sa,p(x), Sc,q(y)

〉
T ((V ))

〈
dxp, dyq

〉
V

(8.5)
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and making an appropriate definition for the quantity
〈
dxp, dyq

〉
V

. This is done in section 4 in [Salvi et al.,
2021] for the setting that the paths x and y are geometric rough paths (cf. Definition 2.11 in this article). The
main technicality is using the theory of integrating one-forms along rough paths to make sense of the double
integral in (8.5) in this rougher setting. A review of the theory of integrating one-forms along rough paths can
be found in Appendix B of [Salvi et al., 2021]; a more thorough presentation of this theory can be found in
section 4 of [Lyons et al., 2007]. The full details of how to make sense of the rough double integral can be
found in section 4 of [Salvi et al., 2021].

Returning to the setting of paths of bounded variation, numerical schemes to approximate Kx,y are de-
veloped in [Salvi et al., 2021], which we now illustrate in the case that V = Rd for some d ∈ N. Assume that
I, J ⊂ R are compact intervals and that x : I → Rd and y : J → Rd are both piecewise linear. Then the PDE
(8.4) becomes

∂2Kx,y

∂s∂t
= CKx,y (8.6)

on each domain Dij :=
[
ui, ui+1

]
×
[
vj , vj+1

]
that C :=

〈
ẋs, ẏt

〉
is constant on. In integral form, (8.6) reads

Kx,y(s, t) = Kx,y(s, v) +Kx,y(u, t)−Kx,y(u, v) + C

∫ s

u

∫ t

v

Kx,y(r, w)drdw (8.7)

for (s, t), (u, v) ∈ Dij with u ≤ s and v ≤ t. Approximations of the double-integral in (8.7) can be used to
develop finite difference schemes to approximate Kx,y . The relatively simple approximation∫ s

u

∫ t

v

Kx,y(r, w)drdw ≈ 1

2

(
Kx,y(s, v) +Kx,y(u, t)

)
(s− u)(t− v), (8.8)

is used in [Salvi et al., 2021] to develop such a scheme.
In order to more precisely discuss this finite difference scheme, let I, J be compact intervals and D1 :=

{u0 < u1 < . . . < um−1 < um} and D2 := {v0 < v1 < . . . < vn−1 < vn} be partitions of I and J
respectively for which x is piecewise linear with respect to D1 and y is piecewise linear with respect to D2.
Then (8.8) can be used to define numerical schemes for (8.4) on the grid P0 := D1 × D2, and its dyadic
refinements. For λ ∈ N0 we define Pλ as the dyadic refinement of P0 such that

Pλ ∩
(
[ui, ui+1]× [vj , vj+1]

)
=

2λ⋃
k,l=0

{(
ui +

k

2λ
(
ui+1 − ui

)
, vj +

l

2λ
(
vj+1 − vj

))}
. (8.9)

In [Salvi et al., 2021] the authors define the finite difference scheme

K̂
(
si+1, tj+1

)
= K̂

(
si+1, tj

)
+ K̂

(
si, tj+1

)
− K̂

(
si, tj

)
+

1

2

〈
xsi+1 − xsi , ytj+1 − ytj

〉(
K̂
(
si+1, tj

)
+ K̂

(
si, tj+1

))
, (8.10)

with K̂(s0, ·) = K̂(·, t0) = 1, on the grid

Pλ =

m−1⋃
i=0

n−1⋃
j=0

2λ−1⋃
k,l=0

{(
ui +

k

2λ
(
ui+1 − ui

)
, vj +

l

2λ
(
vj+1 − vj

))}
=:

2λn⋃
i=0

2λm⋃
j=0

{
(si, tj)

}
. (8.11)

They further establish that refining the discretisation of the grid used to approximate the PDE yields conver-
gence to the true value.

Theorem 8.2 (Global Convergence; Theorem 2.8 in [Salvi et al., 2021]). Assume that x and y are piecewise
linear paths as above satisfying that

sup
I×J

∣∣〈ẋs, ẏt〉∣∣ ≤M (8.12)

for some M > 0. Then there exists a constant C1 > 0, depending on M and Kx,y , such that for any λ ≥ 0 the
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numerical solution K̂ obtained by applying the scheme define by (8.10) on Pλ satisfies

sup
I×J

∣∣∣Kx,y(s, t)− K̂(s, t)
∣∣∣ ≤ C1

22λ
. (8.13)

In [Salvi et al., 2021] it was found that rescaling the paths x and y ensures that coarse partition choices of
λ = 0, 1 were sufficient to provide good approximations, as illustrated in Figure 9.

Figure 9: Example of error distribution of kx,y(s, t) on the grids P0, P1 and P2—Figure 2 in [Salvi et al.,
2021]. Copyright ©2021 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.

It is noted in [Salvi et al., 2021] that the “PDE structure” allows for efficient GPU implementation of
the scheme via parallelization. Figure 10, which is Figure 3 in [Salvi et al., 2021], illustrates the complexity
reduction from quadratic on CPU to linear on GPU.

Figure 10: Comparison of the elapsed time(s) to reach an accuracy of 10−3 from a target value obtained by
solving the signature kernel PDE on a fine discretization grid (P5). Each run simulates 5 (piecewise linear
interpolations of) Brownian paths. The left plot shows the dependency on the length of two paths in dimension
2. The right plot shows the dependency on the dimension of two paths of a fixed length. Reproduction of
Figure 3 in [Salvi et al., 2021]. Copyright ©2021 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved.

In [Salvi et al., 2021], the untruncated signature kernel is compared against other kernels via the task
of classification with Support Vector Machine (SVM) classifiers [Vapnik, 1998]. SVM classifiers have been
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successfully used in medicine [Furey et al., 2000], image retrieval [Tong and Chang, 2001] and text classifica-
tion [Tong and Koller, 2001], for example. Given X = {x1, . . . , xn} and a reproducing kernel k on X with
associated reproducing kernel Hilbert space (RKHS) Hk, consider the pairs

{
(xi, yi) | i ∈ {1, . . . , n}

}
. For

binary classification we have yi ∈ {−1, 1} and the binary SVM classification algorithm aims at solving the
minimisation problem

min
f∈Hk

n∑
i=1

L(yi, f(xi)) + λ||f ||Hk
(8.14)

where L(yi, f(xi)) := max
{
0, 1 − yif(xi)

}
and λ is a penalty hyper-parameter. The optimal solution f∗ is

given by

f∗(x) := sign

(
α0 +

n∑
i=1

αiyik(x, xi)

)
(8.15)

where α0, . . . , αn are scalar coefficients solving a certain quadratic programming problem, see [Scholkopf and
Smola, 2018] for full details.

Selecting an appropriate kernel when X consists of multivariate time-series is difficult [Sapankevych and
Sankar, 2009]. When all time-series in X have the same length, the standard kernels (i.e. linear, polynomial,
Gaussian etc) work well. But outside this setting, kernels specifically designed for sequential data are required.
The performances of an SVM classifier equipped with a range of different kernels on various multivariate
time-series UEA datatsets [Bagnall et al., 2017] are presented in Table 2. The global alignment kernel (GAK)
[Cuturi, 2011] is the only other kernel proposed for sequential data, and depends on a hyperparamter β ∈ (0, 1].
The full untruncated signature kernel (Sig-PDE) SVM is among the top 2 classifiers across all but two of the
datasets. Sig-PDE systematically outperforms its truncated counterpart Sig(n). Further numerical applications
of the signature kernel can be found in section 5 of [Salvi et al., 2021].

Datasets/Kernel Linear RBF GAK Sig(n) Sig-PDE
ArticularyWordRecognition 98.0 98.0 98.0 92.3 98.3

BasicMotions 87.5 97.5 97.5 97.5 100.0
Cricket 91.7 91.7 97.2 86.1 97.2
ERing 92.2 92.2 93.7 84.1 93.3
Libras 73.9 77.2 79.0 81.7 81.7

NATOPS 90.0 92.2 90.6 88.3 93.3
RacketSports 76.9 78.3 84.2 80.2 84.9

FingerMovements 57.0 60.0 61.0 51.0 58.0
Heartbeat 70.2 73.2 70.2 72.2 73.6

SelfRegulationSCP1 86.7 87.3 92.4 75.4 88.7
UWaveGestureLibrary 80.0 87.5 87.5 83.4 87.0

Table 2: Test set classification accuracy (in %) on UEA multivariate time series datasets - Table 1 in [Salvi
et al., 2021]

Subsequent to the appearance of [Salvi et al., 2021], numerous works have considered the development
and application of signature kernel techniques within a wide range of settings. We end this section with a
far-from-exhaustive summary of some of the further developments of signature kernel techniques.

General Signature Kernels (GSKs) have been introduced in [Cass et al., 2021]. Recall that for A,B ∈
T ((V )) we have that

〈
A,B

〉
T ((V ))

=
∑∞

n=0

〈
πn(A), πn(B)

〉
V ⊗n (cf. (2.37)). Loosely, the GSKs proposed

in [Cass et al., 2021] are obtained by choosing coefficients {ϕ(n)}∞n=0 ⊂ C that are not required to be 1,
and subsequently replacing the inner product

〈
·, ·
〉
T ((V ))

by
〈
·, ·
〉
ϕ

which is defined for A,B ∈ T ((V )) by〈
A,B

〉
ϕ
:=
∑∞

n=0 ϕ(n)
〈
πn(A), πn(B)

〉
V ⊗n . Of course

〈
·, ·
〉
ϕ

is not necessarily an inner product on T ((V )),
but one may still define an associated GSK by

Kϕ
x,y(s, t) :=

〈
Sa,s(x), Sc,t(y)

〉
ϕ
=

∞∑
n=0

ϕ(n)
〈
Sn
a,s(x), S

n
c,t(y)

〉
V ⊗n (8.16)
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for x ∈ V1([a, b], V ), y ∈ V1([c, d], V ), s ∈ [a, b] and t ∈ [c, d]. In many situations GSKs can be interpreted
as an average of PDE solutions, and may consequently be computed via suitable quadrature rules [Cass et al.,
2021]. The extension of this analysis allows the authors of [Cass et al., 2021] to obtain closed-form formulae for
expressions involving the expected (Stratonovich) signature of Brownian motion and to articulate a connection
between signature kernels and the hyperbolic development map.

In a different direction the signature kernel techniques developed in [Salvi et al., 2021] are central to
the work on Optimal Stopping Problems in [Horvath et al., 2023]. A major achievement of [Horvath et al.,
2023] is the development of a rigorous mathematical framework in which an Optimal Stopping Problem can
be recast as a higher order kernel mean embedding regression based on the notions of higher rank signatures of
measure-valued paths and adapted topologies. This overcomes the issue in Optimal Stopping Problems arising
from mathematical finance that the corresponding value functions are, in general, discontinuous with respect
to the weak topology. Full details may be found in [Horvath et al., 2023].

The final use of the signature kernel techniques developed in [Salvi et al., 2021] that we mention here is in
the development of an efficient method for the computation of a sparse collection of iterated integrals [Shmelev
and Salvi, 2024]. The authors of [Shmelev and Salvi, 2024] introduce a technique to effectively isolate specific
groups of signature coefficients including, in particular, a singular coefficient at any depth. The empirical
effectiveness of this approach is demonstrated via the task of the construction of N -step Euler schemes for
sparse CDEs [Shmelev and Salvi, 2024].

9. Neural CDEs and Neural RDEs
In this section we discuss Neural Controlled Differential Equations (Neural CDEs) [Kidger et al., 2020] and
their subsequent development to Neural Rough Differential Equations (Neural RDEs) [Morrill et al., 2021b].
Loosely speaking, both are techniques in which Neural networks are utilised to learn solutions to differential
Equations. We begin with a brief discussion of Neural Ordinary Differential Equations (Neural ODEs).

Neural ODEs are a popular and successful ODE based approach to modelling temporal dynamics. They
aim to approximate a mapping F : Rq → Rl by learning linear maps l1θ : Rq → Rd, l2θ : Rd → Rl, and a
function fθ : Rd → Rd, all depending on parameter θ, for which the following is true. Given x ∈ Rq , let
z : [0, T ] → Rd denote the solution to the ODE

z(0) = l1θ(x) and z(t) = z(0) +

∫ T

0

fθ(z(s))ds (9.1)

for every t ∈ (0, T ]. Then the value y := l2θ(z(T )) ∈ Rl gives a good approximation for F (x) ∈ Rl, i.e.
y ≈ F (x). Explicit dependence of fθ on s is only obtained by including s as an extra dimension in zs; see
Appendix B in [Chen et al., 2018]. The use of ODEs leads to the following fundamental issue. Once the
parameter θ has been learnt, the solution to the ODE is determined by the initial condition. There is no direct
mechanism for adjusting the trajectory to incorporate data that arrives later [Kidger et al., 2020].

In [Kidger et al., 2020] the authors resolve this issue by using CDEs, resulting in their development of
Neural CDEs. We detail their approach for a fully-observed yet potentially irregularly sampled time-series
x =

(
(t0, x0), (t1, x1), . . . , (tn, xn)

)
for timestamps t0 < t1 < . . . < tn and observations x0, x1, . . . , xn ∈

Rp. The natural cubic spline X : [t0, tn] → Rp+1 with knots at t0, . . . , tn such that Xti = (xi, ti) is chosen
to approximate the underlying process observed via x. The resulting differentiability of the control path X
allows one to treat the dXs term as dXs

ds ds. In Appendix A of [Kidger et al., 2020] it is justified that the choice
of natural cubic spline for X has the minimum regularity required.

Let fθ : Rd → Rd×(p+1) be any neural network model depending on parameters θ and having a hidden
state of size d. Let ζθ : Rp+1 → Rd be any neural network depending on parameters θ. Then the Neural CDE
model is defined to be the solution of the CDE

zt0 = ζθ(x0, t0) and zt = zt0 +

∫ t

t0

fθ(zs)dXs (9.2)

for all t ∈ (t0, tn]. The integral in (9.2) is the Riemann–Stieltjes integral. This initial condition is used to avoid
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translational invariance. The model output can be taken as either the evolving process z or its terminal value
ztn , and the final prediction should typically be given by a linear map applied to this output.

The essential difference between Neural CDEs and Neural ODEs is that the equation (9.2) for Neural
CDEs is driven by the data process X , whilst the corresponding equation for Neural ODEs is driven only by
the identity map R → R. The Neural CDE is naturally adapting to incoming data; changes in X change the
local dynamics of the system. This difference is illustrated in Figure 11, which is Figure 1 in [Kidger et al.,
2020].

t1 t2 t3 · · · tn
Time

x1
x2 x3

xn Data x

Hidden state z

t1 t2 t3 · · · tn
Time

x1
x2 x3

xn Data x

Path X

Hidden state z

Figure 11: Left: The hidden state is modified at each observation, and potentially continuously evolved be-
tween observations. Right: The hidden state in the Neural CDE model has continuous dependence on the
observed data. Figure 1 in [Kidger et al., 2020]. Reproduced with permission. Copyright held by authors
of [Kidger et al., 2020].

In Appendix B in [Kidger et al., 2020] the authors establish that Neural CDEs are universal approximators.
The precise statement may be found as Theorem B.14 in [Kidger et al., 2020]; informally it guarantees that a
continuous function from the space of time-series can be arbitrarily well-approximated locally by a linear map
applied to the terminal value of a Neural CDE. The essential idea is that CDEs can be used to approximate
bases of continuous functions on path space. This is itself a consequence of the universal nonlinearity property
of the path signature (cf. Theorem 3.3 in this article) and that the path signature solves a CDE (cf. (4.2)). Full
details may be found in Appendix B of [Kidger et al., 2020].

The efficacy of Neural CDEs is demonstrated in [Kidger et al., 2020] via the task of written character
classification. The CharacterTrajectories dataset from the UEA time series classification archive [Bagnall
et al., 2018] is considered. This is a dataset of 2858 time series, each of length 182, consisting of the x and y
coordinate positions and the pen tip force whilst a Latin alphabet character is written in a single stroke. The
task is to classify which of the 20 different characters are written.

Three experiments are run in [Kidger et al., 2020] in which 30%, 50% and 70% of the observations are
selected to be dropped. The selections are made uniformly at random and independently for each time series.
This results in a dataset of irregularly sampled, completely observed time series. The Neural CDE model is
compared with several ODE and RNN based models, details of which may be found in [Kidger et al., 2020].
The results are summarised in Table 3 below, which is a variant of Table 1 in [Kidger et al., 2020]. The
randomly removed data is the same for every model and every repeat. The Neural CDE outperforms every
other model considered. Moreover, the Neural CDE performance remains roughly constant as the percentage
of dropped data increases, whereas the accuracy of the other models start to decrease.

Model 30% dropped 50% dropped 70% dropped
GRU-ODE 92.6± 1.6 86.7± 3.9 89.9± 3.7
GRU-∆t 93.6± 2.0 91.3± 2.1 90.4± 0.8
GRU-D 94.2± 2.1 90.2± 4.8 91.9± 1.7

ODE-RNN 95.4± 0.6 96.0± 0.3 95.3± 0.6
Neural CDE 98.7± 0.8 98.8± 0.2 98.6± 0.4

Table 3: Test accuracy (mean% ± std%, computed across five runs) on CharacterTrajectories - Table 1 in
[Kidger et al., 2020]
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The performance of Neural CDEs is investigated through further numerical experiments in [Kidger et al.,
2020]. In addition to performance, the ability to utilise memory-efficient adjoint-based backpropagation in
Neural CDEs ensures that they use significantly less memory than other approaches [Kidger et al., 2020]. It is
also explained in [Kidger et al., 2020] how the Neural CDE approach can be applied to partially observed data.
Consequently Neural CDEs overcome some of the issues that can arise in the use of Recurren Neural Networks
(RNNs) for irregularly sampled or partially observed time series [Kidger et al., 2020]. The subsequent work
[Morrill et al., 2021a] develops Neural CDEs for online use; that is, to learn and predict in real-time where new
data arrives during inference. The key component is to replace the use of a natural cubic spline for the control
path X by a new control signal satisfying four ideal requirements; see [Morrill et al., 2021a] for full details.

The Neural CDE approach developed in [Kidger et al., 2020] numerically solves the resulting CDE via
evaluations of the control path X . Consequently, Neural CDEs performance drops for long time series, and the
large number of forward operations within each training epoch result in prohibitive training time [Morrill et al.,
2021b]. In [Morrill et al., 2021b] these issues are overcome by using the log-ODE method (cf. Section 4 in
this article) to numerically solve the resulting CDE. The main idea is that the log-ODE method offers a way to
update the hidden state of a Neural CDE over large intervals, dramatically reducing the effective length of the
time series [Morrill et al., 2021b]. An additional benefit of this approach is its removal of the requirement for
the control path X to be differentiable. The resulting approach is termed Neural Rough Differential Equations
(Neural RDEs). Neural RDEs still make use of the memory-efficient continuous-time adjoint backpropagation;
the resulting decrease in memory requirement is increasingly relevant as the time series length increases.

We detail the Neural RDE approach for a fully-observed yet potentially irregularly sampled time-series
x =

(
(t0, x0), (t1, x1), . . . , (tn, xn)

)
for timestamps t0 < t1 < . . . < tn and observations x0, x1, . . . , xn ∈

Rp. Construct a piecewise linear interpolationX : [t0, tn] → Rp+1 such that, for each i ∈ {0, . . . , n}, we have
Xti = (ti, xi).

For a choice of positive integer m much smaller than n, pick points t0 = r0 < r1 < . . . < rm = tn.
Whilst it is not a requirement, it is typical to choose these points to be spaced equally apart. The choice and
spacing are hyper-parameters of the model. For a chosen depth hyper-parameter N ∈ Z≥1 we compute the
truncated log signature LogSig(N)

ri,ri+1
(X) for each i ∈ {0, . . . ,m−1}. The log-ODE method (see Section 4 in

this article) is then used to numerically solve the CDE (9.2) on the interval [t0, tn] by inductively solving it over
the interval [ri, ri+1]. That is, let i ∈ {0, . . . ,m− 1} and assume that the solution zt has already been defined
for t ∈ [0, ri]. Consider the equation specified in (9.2) over the interval [ri, ri+1] with initial condition zri .
Then the solution is extended to interval [t0, ri+1] by defining zτ := LogODE

(
zri , fθ,LogSig

(N)
ri,ri+1

(X), τ
)

(cf. (4.8)) for τ ∈ (ri, ri+1]. Recall from Section 4 that this only involves solving an ODE over [ri, ri+1],
which may be done using standard ODE solvers. Figure 12 below gives a high level comparison of the CDE
and RDE based approaches; it appears as Figure 1 in [Morrill et al., 2021b]

t0 T

Neural CDE

Time

CDE

Path, Xt

(smoothed)

Response

(a) CDE approach proposed in [Kidger et al., 2020]
in which data is smoothly interpolated and pointwise
derivative information is used to drive the CDE.

t0 T

Neural RDE

Time

Path, Xt

Summaries

RDE

Response

(b) RDE approach proposed in [Morrill et al., 2021b] in
which local interval summarisations of the data given by
truncated log signatures are computed and used to drive
the response over the interval.

Figure 12: Figure 1 in [Morrill et al., 2021b]. Reproduced with permission. Copyright held by authors of
[Morrill et al., 2021b].
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Numerical experiments are conducted in [Morrill et al., 2021b] to illustrate the benefits of the Nerual
RDE approach in the setting of long time series. One task considers the EigenWorm dataset from the UEA
archive [Bagnall et al., 2017]. This consists of time series of length 17 984 and 6 channels (including time)
corresponding to the movement of a roundworm. The task is to classify each worm as either wild-type or one
of four mutant-type classes.

The regular sampling allows the choice of ti := i. Neural RDEs are run for all depths N ∈ {2, 3} and all
step sizes in {2j | j ∈ {1, . . . , 10}}. A Neural CDE model and an ODE-RNN model (introduced in [Rubanova
et al., 2019]) are used for baseline comparison. Precise details of hyper-parameter selection, optimisers, and
other model parameter choices may be found in Appendix C of [Morrill et al., 2021b].

The experiment is run three times for each model and each hyper-parameter combination, with the mean
and standard deviation of the accuracy recorded. The results are presented in Table 4 below, which is a version
of Table 1 in [Morrill et al., 2021b]. For brevity, the results are only displayed for a sub-selection of step sizes
considered; the full results can be found in Table 7 in Appendix D of [Morrill et al., 2021b]. Amongst the
results included in Table 4 we observe that the best accuracy results are returned by Neural RDE models, and
that the accuracy achieved is a noticeable improvement over that resulting from either of ODE-RNN or Neural
CDE models. This improvement over Neural CDE performance comes at the cost of Neural RDE models
being more memory intensive. However, Neural RDE models remain significantly less memory intensive than
ODE-RNN models.

Model Step Test Accuracy (%) Memory (Mb)
4 35.0± 1.5 3629.3

ODE-RNN 32 32.5± 1.5 532.2
128 47.9± 5.3 200.8

4 66.7± 11.8 46.6
Neural CDE 32 64.1± 14.3 8.0

128 48.7± 2.6 3.9
4 83.8± 3.0 180.0

Neural RDE (depth 2) 32 67.5± 12.1 28.1
128 76.1± 5.9 7.8

4 76.9± 9.2 856.8
Neural RDE (depth 3) 32 75.2± 3.0 134.7

128 68.4± 8.2 53.3

Table 4: Test accuracy (mean% ± std%, computed across three repeats) and memory usage on EigenWorms -
Part of Table 1 in [Morrill et al., 2021b]

In [Kidger et al., 2021a] Neural CDEs are combined with Neural Stochastic Differential Equations (Neural
SDEs) (see [Tzen and Raginsky, 2019, Li et al., 2020, Hodgkinson et al., 2020], for example) to show that the
classical approach to fitting SDEs can be approached as a special case of (Wasserstein) GANs. This direct
extension makes no reference to pre-specified statistics or density functions. As a consequence, in the infinite
data limit any SDE may be learnt. Full details of this approach and several subsequent applications may
be found in [Kidger et al., 2021a]. Moreover, the follow-up work [Kidger et al., 2021b] introduces several
technical innovations to improve both model performance and training speed for Neural SDEs.

Neural RDEs reduce the computational cost of the log-ODE method by learning the vector field f̃ (cf.
(4.5) in Section 4) as a neural network rather than computing it directly. The paper [Walker et al., 2024]
introduces Log-Neural Controlled Differential Equations (Log-NCDEs) which are Neural RDEs that do not
ignore the structure of the vector field f̃ . Indeed Log-NCDEs directly compute the vector field f̃ via the
iterated Lie brackets of the original vector field f . Whilst Log-NCDEs are necessarily more costly than Neural
CDEs/RDEs, it is shown in [Walker et al., 2024] that this exploitation of the underlying regularity/structure of
the vector fields is demonstrated to achieve a higher average test set accuracy than Neural CDEs, Neural RDEs,
S5, and the linear recurrent unit on a range of multivariate time series classification benchmarks; the interested
reader is directed to [Walker et al., 2024] for full precise details.

The Neural CDE notebook contains an introduction to the technology developed in both [Kidger et al.,
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2020] and [Morrill et al., 2021b]. In particular, the use of the torchcde package for time series classification
and use of the log-ode method are demonstrated. By working through the provided examples the reader will
hopefully gain the experience and familiarity required to utilise the Neural CDE approach within their own
work/projects.

10. Speech Emotion Recognition
Recognising emotions from audio streams has numerous real-world applications, ranging from the use of
voice-based assistants such as Alexa, Siri and Google Home, to being used to assist the detection of psychiatric
disorders such as bipolar disorder. Speech emotion recognition (SER) can use both voice characteristics and
linguistic content to extract emotion.

A key step in SER is determining an effective and efficient representation for emotional utterances or
speech segments. The complexity of emotional expressions make this challenging; the same phrase can indicate
completely different emotions depending on the tone.

Many SER systems extract frame-level acoustic features (e.g. frequency, zero crossing rate, jitter, etc),
called Low-level Descriptors (LLD) for utterances of various lengths, and then apply a set of statistical pooling
functions (mean, max, variance, etc) to obtain fixed-size utterance-level features. Whilst the global characteris-
tics are captured via such pooling functions, temporal variations of speech signals are not effectively extracted,
diluting important regional information [Aldeneh and Provost, 2017].

Recently, various types of deep learning models have been used to effectively model such temporal infor-
mation, including both convolutional and recurrent neural networks (CNN and RNN respectively) [Neumann
and Vu, 2017,Mirsamadi et al., 2017,Tao and Liu, 2018,Han et al., 2018]. The complex network architectures
and large number of parameters involved mean these models are difficult to build and tune, time-consuming to
train, and often require expensive computing resources.

In [Wang et al., 2019], the authors focus on the acoustic characteristics of the speech signal in order
to recognise underlying emotions. Motivated by the inherent sequential structure of emotions conveyed by
speech, the authors explore the use of path signatures for modelling temporal sequences of emotional utter-
ances. They demonstrate that this method incorporates both the short-term characterisation at the frame-level
and the long-term aggregation at the utterance-level. Their approach operates on minimally hand-engineered
filter-bank energy features to help avoid the overfitting issues encountered by other alternative approaches,
see [Mirsamadi et al., 2017].

Inspired by [Yang et al., 2016], a hierarchical tree structure is used for path signature features and tree-
based convolutions are adopted for both the integration of global, regional and local information, and for filter-
ing irrelevant and redundant information. The use of dyadic intervals allows a sufficiently fine description of
both the global and local information to be captured, whilst avoiding the exponential growth in dimensionality
associated with higher order signature terms.

Figure 13: Overview of the proposed SER system - Figure 1 in [Wang et al., 2019]. Reprinted with permission.

Figure 13 illustrates an overview of the proposed SER system as explained below.
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(A) A stream of frame-level energy features is extracted from an utterance

(B) The entire stream of frames within the utterance is segmented to dyadic paths. A truncated signature is
extracted from each dyadic path

(C) The collection of the signatures of each dyadic path is transformed to the dyadic path-tree signature
representation

(D) Tree-based convolution and dynamic pooling are applied to learn the underlying structure. An output
layer is added for final classification.

The signatures are truncated to order 3, and a dyadic level of 4 is selected. The collection of all dyadic pieces
forms the dyadic path-tree from which features at different resolutions and structural information is more
easily extracted. Each node is given an associated weight matrix depending on the nodes relative position,
before dynamic pooling is used to pool the features, again depending on their position in the tree. A final
softmax layer is added for classification, see [Wang et al., 2019] for full details.

The four emotional categories Angry, Happy, Neutral and Sad form the classes for the classification.
Effectiveness is evaluated using data from the Interactive Emotional Dyadic Motion Capture (IEMOCAP)
database [Busso et al., 2008]. It comprises approximately 12 hours of audio-visual recordings performed by 10
actors. Each recording is split in to 5 sessions, and each session is composed of two actors, one male and one
female. Overall it contains 10039 (manually segmented) utterances with an average duration of 4.5 seconds.
The database can be further divided into an improvised speech data set and a scripted data set. In [Wang et al.,
2019], the improvised data set is chosen since the scripted speech exhibits strong correlation with the manually
labelled emotions leading to bias over linguistic content learning.

The openSMILE toolkit [Eyben et al., 2010] is used for extracting 40-dimensional features from each
utterance, with an additional dimension added for time. A leave-one-speaker-out scheme is chosen for evalua-
tion. This means that for each instance A, training is carried out using all instances except A, before the learnt
model is then evaluated on A itself. The cross-entropy cost is considered for training, and the precise hyper-
parameters used are listed in table 1 of [Wang et al., 2019]. The final SER performance is evaluated using
widely adopted metrics: weighted accuracy (WA), which is the overall classification accuracy; and unweighted
accuracy (UA), which averages accuracy of each emotion category. A range of neural network models are
considered as baselines, and the results are summarised in the Table 5.

Model UA WA
COVAREP [Ghosh et al., 2016] 51.84 49.64

DNN-ELM [Lee and Tashev, 2015] 52.13 57.91
LSTM (Speech) [Ghosh et al., 2016] 51.85 51.94
LSTM (Glottal) [Ghosh et al., 2016] 54.56 52.82

Attentive CNN [Neumann and Vu, 2017] 56.83 61.95
PTS-CNN [Wang et al., 2019] 53.03 58.90

Table 5: Model Performances - Table 2 in [Wang et al., 2019]

The relatively simple Path-Tree-Signature based CNN (PTS-CNN) model in [Wang et al., 2019] achieves
comparable results to networks of complex design. The PTS-CNN model can deal with utterances of variable
length without preprocessing and uses the openSMILE toolkit [Eyben et al., 2010] to obtain its features. This
is in stark contrast to the Attentive-CNN model, which requires utterances to be processed to all have the same
length and uses the tailor-made eGeMAPS feature set [Eyben et al., 2015]. With minimal model tuning, or
manual engineering, the PTS-CNN model yields comparable results to complex neural network models making
use of a range of heavily engineered emotion features (COVAREP, LSTM [Ghosh et al., 2016]).
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11. Health Applications

11.1. Bipolar and Borderline Personality Disorders
Historically, the diagnosis of psychiatric disorders has been hampered by the inherent inaccuracy of retrospec-
tive recall of mood states. The influx of development in mobile technology (such as mobile phones, smart
watches, fitbits etc) has allowed momentary assessment to obtain more precise measures of psychopathology
and highlighted the shortcomings of current diagnostic categories [Perez Arribas et al., 2018]. The NIMH
Research Domain Criteria (RDoC) propose a new data-driven approach bottom up approach to diagnosis. The
oscillatory nature of psychiatric symptomatology poses a significant analytic challenge.

In [Perez Arribas et al., 2018], signature-based machine learning models are proposed to analyse data ob-
tained from a clinical study in [Tsanas et al., 2016]. The study explored daily reporting of mood in participants
with bipolar disorder, borderline personality disorder and healthy volunteers. The two problems tackled were
the classification problem of classifying participants on the basis of their mood, and the time-series forecasting
problems of predicting the participants mood the following day.

Mood data was captured from 130 individuals; 48 of whom were diagnosed with bipolar disorder (BD),
31 were diagnosed with borderline personality disorder (BPD) and 51 were healthy. For a minimum of two
months, the participants rated their mood across six different categories (anxiety, elation, sadness, anger, irri-
tability and energy) using a 7-point Likert scale with values from 1 (not at all) to 7 (very much). The data was
split into streams of 20 consecutive observations, which did not necessarily arise from 20 consecutive days due
to failure of participants recording. This generated 733 streams of data, which were randomly split into 513
training instance streams and 220 testing instance streams.

The streams were identified, after normalisation, as 7-dimensional paths (one dimension for time, 6 di-
mensions for the moods) and giving the input-output pairs

(
Ri, Yi

)
where Ri is the 7-dimensional path of

participant i. Figure 14 shows the normalised anxiety scores of a participant with BD and the associated two-
dimensional path. Intuitively, if this two-dimensional path has an upward trend than the participant scores are
greater than 4 in that category. Conversely, a downward trend corresponds to scores lower than 4. Drastic
mood changes from day to day will result in a highly oscillating normalised path, whereas a more stable day
to day mood will result in a more stable normalised path.

Figure 15 shows the normalised scores of each category plotted against all other categories, clearly illus-
trating the order in which a participants mood changes. For example, consider the Angry vs. Elated plot (third
row, first column). The path starts at (0, 0) and initially moves left, showing that the participant is becoming
less elated while their anger score remains almost constant. Suddenly the period of low elation stops and the
participant begins recording lower anger levels, and these low levels of anger persist for the rest of the path.
On the other hand, the Angry vs. Irritable plot (fifth row, first column) is essentially a straight line, revealing
that the levels of anger and irritability are highly correlated and roughly equal for this participant.

The truncated signatures Πn

(
S(Ri)

)
= S(n)(Ri) for n = 2, 3, 4 are used to provide new input-output

pairs. These truncated signatures will, in particular, capture the order of a participants mood change as illus-
trated in Figure 15. The strategies for each task are broadly similar.

For the classification, the participant of interest was removed from the data before softmax regression
was used on the remaining pairs

{(
S(n)(Ri), Yi

)}
. Removing the participant of interest from the training

reduced the risk of overfitting and increased the models robustness to new data. The model was then tested on
20-observations periods from the participant of interest, with the proportion of the periods of time for which
they were classified as each of healthy, bipolar or borderline personality recorded.

Earlier work [Tsanas et al., 2016] already established there are differences in mean mood scores between
the overall groups, hence classifying the streams of 20 consecutive observations on the basis of comparison
with the mean score in each mood category was used as a baseline model for comparison.

The signature method significantly out-performed the naive mean-based model; the mean-based model
classified 54% of participants correctly, whilst the signature model correctly classified 74.85% of participants.
Incorrect predictions were mainly found in the split between bipolar disorder and border personality disorder
participants, whereas the model very clearly distinguished healthy participants from the group. Full details
may be found in [Perez Arribas et al., 2018].

For the mood prediction, mean absolute error (MAE) regression was used on the input-output pairs

55



11.1 Bipolar and Borderline Personality Disorders Terry Lyons & Andrew D. McLeod

Figure 1: Normalised anxiety scores of a participant with bipolar disorder
(above), which were calculated using the reported scores (below). As we see,
high levels of reported scores correspond to upward trends, low levels of reported
scores correspond to downward trends and periods of time of high oscillations
in the reported scores are represented by oscillations in the path.

2.2 Group classification

With the objective of building a machine learning model that classifies each
participant with the corresponding clinical group, we started establishing a set of
input-output pairs {(Ri, Yi)}i, where Ri is the 7-dimensional path of participant
i, as described above, and Yi denotes the group it was diagnosed into at the
beginning of the study. This set was transformed into a new set of input-
output pairs, {(Sn(Ri), Yi)}i, where Sn(Ri) denotes the truncated signature of
order n of the stream Ri (see [LLN16]). The size of the truncated signature of
order n grows exponentially with n, and therefore large values of n will produce
input vectors of large dimensions. However, in practice we will only considered
n = 2, 3, 4.

4

Figure 14: Normalised anxiety scores of a participant with bipolar disorder (above), which were calculated
using the reported scores (below). High levels of reported scores correspond to upward trends, low levels of
reported scores correspond to downward trends and periods of time of high oscillations in the reported scores
are represented by oscillations in the path — Figure 1 in [Perez Arribas et al., 2018]. Unaltered. Licensed
under a Creative Commons Attribution 4.0 International License.

{(
S(n)(Ri), Yi

)}
. For testing, a prediction Ŷi was deemed correct if

∣∣Ŷi − Yi
∣∣ ≤ 1, reflecting that we are

only interested in predicting the correct class, rather than capturing the exact score. The model is benchmarked
against the simple model of predicting that the next days score will be the same as the previous. The results
are summarised in Table 6. More detailed performance results for the signature-based method can be found in
Table 3 in [Perez Arribas et al., 2018]

Model Healthy Accuracy (%) Bipolar Accuracy (%) Borderline Accuracy (%)
Same-as-prior 61-92 46-67 44-62

Signature 89-98 82-90 70-78

Table 6: Comparison of mood prediction models — Summary of Table 3 in [Perez Arribas et al., 2018]

The subsequent work [Wang et al., 2020] extends the use of path signature techniques to the classifi-
cation of Bipolar disorder and Borderline Personality disorder using multi-modal datasets. The dataset con-
sidered comes from the Automated Monitoring of Symptoms Severity (AMoSS) study [Perez Arribas et al.,
2018, Tsanas et al., 2016] in which volunteers self-monitored their own daily mood via a smartphone app in
conjunction with a range of wearable devices. Among the 139 participants, 53 had been diagnosed with BD, 33
had been diagnosed with BPD, and 53 had neither (termed healthy control, HC). Halfway through the study, 62
participants were interviewed by 2 clinicians and 2 psychology graduates to gather feedback about the scheme.
The interviews were either conducted in-person or by telephone. The interviews were semi-structured with the
topics remaining within the scope of
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Figure 2: Normalised scores of each category plotted against all other categories,
for a participant with bipolar disorder. The red point indicates the starting
point. Notice that the scale is different in each plot.

Given that it has already been established that there are differences in mean
mood scores between the groups overall ([TSB+16]) we also calculated the mean
score in each mood category and classified streams of 20 consecutive observa-
tions on this basis as a comparison to the signature method. To assess the
performance of the classification procedure we computed accuracy, sensitivity,
specificity, positive predicted value (PPV). We used the area under the receiver
operating characteristic curve (RoC) to assess the performance of the classifica-
tion model at different values of threshold. Moreover, in order to have a better
understanding of how robust these percentages are, we applied bootstrapping
to the model with the order fixed to 2.

We also considered the extent to which participants where characterised
as belonging to each specific clinical group. We trained the model using all
participants but the one we are interested in, and then test the model with
20-observations periods from this person. We then calculated the proportion
of periods of time when the participant was classified as bipolar, healthy or
borderline, which allows us to plot the participant as a point in the triangle.
This process was followed for every participant.

5

Figure 15: Normalised scores of each category plotted against all other categories, for a participant with bipolar
disorder. The red point indicates the starting point and each plot has its own scale - Figure 2 in [Perez Arribas
et al., 2018]. Unaltered. Licensed under a Creative Commons Attribution 4.0 International License.

• Users experience of the smartphone app,

• Users experience of the wearable device,

• Benefits of participation in the study, and

• Potential improvements.

The topics were non-clinical, with no direct effort made to establish either a diagnosis or the participants mental
state at the time of the interview.

The AMoSS interview (AMoSS-I) dataset considered in [Wang et al., 2020] consists of 50 randomly
sampled interviews that were initially transcribed by the same interviewers. An alignment procedure was
applied to the audio recordings and manual transcribed text, as detailed in [Wang et al., 2020]. In total, 67
features are extracted from the processed dataset including 28 linguistic features denoted as LING (such as
mean sentence length, number of first person pronouns), 19 semantic content features CNT (such as number of
words categorised as a certain emotion), 6 dialogue features DIAL (such as number of short pauses of less than
half a second, number of pauses of longer than half a second), 3 features dealing with interruptions and talking
over others, and 11 averaged features representing each pause. Full details of these features their extraction
may be found in Section 3 of [Wang et al., 2020].

A leave-one-participant-out evaluation scheme is selected and combined with logistic regression with
the aim of classifying whether a participant was BD, BPD or HC based on their interview. The signature
transform truncated to order 3 was applied to the path given by each extracted feature. The correlation of the
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features in the training data were ranked via a psychological scale (so-called International Personality Disorder
Examination (IPDE) score, see [Loranger et al., 1994]) and only those features with a p-value below 0.001
were retained. The selected features are then fed to the classifier for 3 separate binary tasks:

• BD vs. HC,

• BPD vs. HC, and

• BD vs. BPD.

Three separate experiments are conducted; one in which features are only extracted from the speech of the par-
ticipant, one in which features are only extracted from the interviewer, and one in which features are extracted
from the speech of both.

Figure 16: Data pipeline including three stages of data preprocessing (in purple), feature extraction (in green)
and classification (in orange). Variant of Figure 2 in [Wang et al., 2020]. Reprinted with permission.

The results for the classification task are summarised in Table 7. The scores presented are the average of
the AUROCs across all interviews. Extracting features from the participant alone results in a good classifier for
the task. Given that the interviews were non-clinical and not aimed at establishing the mood of a participant, it
is not surprising that the features extracted from the interviewer perform badly.

AUROC
Subject BD vs. HC BPD vs. HC BD vs. BPD

Participant 0.810 0.733 0.817
Interviewer 0.304 0.473 0.231

Both 0.494 0.431 0.657

Table 7: Average AUROC for each binary classification — Table 3 in [Wang et al., 2020]

Ablation experiments were conducted to examine the affect of removing each feature type. The results
are summarised in Table 8. The LING features are the biggest contributors; in fact, when they are removed the
p-value threshold has to be made 5 times larger to allow any features to be selected. The results illustrate that
combining different types of features works better than relying on any individual type.

The subsequent work [Wang et al., 2021] investigates the use of the invisibility reset transform (cf. (2.21))
to effectively model the conversation dynamics by enhancing the signature representation of conversation
speech. Further, the subsequent work [Wu et al., 2022] uses an approach based upon the log signature to
overcome the common issue of missing responses. The central idea is to record the omission of data as a new
channel, and subsequently summarise the resulting streams via the log signature.

11.2. Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common form of dementia in older people, affecting 6% of the population
aged over 65. Memory loss is a mild cognitive impairment (MCI) commonly indicating early stage of AD.
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Features BD vs. HC BPD vs. HC BD vs. BPD
All 0.810∗∗ 0.733∗∗ 0.817∗∗

All - CNT 0.810∗∗ 0.733∗∗ 0.787∗∗

All - Dial 0.768∗∗ 0.733∗∗ 0.811∗∗

All - LING 0.625∗ 0.578∗ 0.669∗

All - LING - CNT 0.642∗ 0.703∗ 0.604∗

All - LING - Dial 0.442∗ 0.429∗ 0.550∗

All - CNT - Dial 0.768∗∗ 0.733∗∗ 0.763∗∗

Table 8: Feature ablation results (AUROC) for each task; p-value used for feature selection: ∗ ∗ < 0.001 and
∗ < 0.005. Table 4 in [Wang et al., 2020].

MCI is diagnosed with no evidence of dementia, and MCI does not always progress to dementia. However, the
progressive and irreversible loss of brain function caused by AD suggests that potential drug therapies should
be used as early as possible. Hence there is a demand for reliable early predictions of which individuals will
develop AD.

Using brain imaging data to derive features for predicting a diagnosis of AD has been investigated in
many works, see [Schmitter et al., 2015, Sørensen et al., 2017, Westman et al., 2011] for example. In [Moore
et al., 2019], signature-based techniques are developed to distinguish between healthy and Alzheimer groups
from preprocessed MRI data. Data from the TADPOLE grand challenge competition in 2019 was used for the
classification tasks considered in [Moore et al., 2019]. The 1737 participants from the TADPOLE data set are
split into three groups; the 688 who have a diagnosis of Alzheimer’s disease at some time (labelled AD), the
424 who always have a healthy diagnosis (labelled NL), and the 484 who always have an MCI diagnosis (la-
belled MCI). This results in the comparison of participants whose diagnosis converts to Alzheimer’s disease
with those whose diagnosis remains unchanged.

The training data is selected in [Moore et al., 2019] by selecting participants with a first diagnosis of AD
at 36 months from baseline (start of monitoring). Each selected participant is further required to have at least
four measurements of all the variables WholeBrain (w), Hippocampus (h) and Ventricles (v) (see [Moore et al.,
2019] for details of these variables) in the 24 months since baseline, with one measurement at the 24 month
time point. Finally, each selected participant from the AD set is required to have matching counterparts in
both the NL and MCI sets. Given a member x ∈ AD, an individual y ∈ NL or y ∈ MCI qualifies as a
counterpart x if the following requirements are satisfied. Firstly, the ages of y and x must differ by no more
than 5 years. Secondly, the diagnosis for y must have remained unchanged for the 72 months since their first
(baseline) measurement. Finally, y must have at least four measurements of all the variables w, h, and v up to
month 24, again including a measurement at month 24 itself.

The test data is selected making use of measurements starting from 12 months since the first baseline
measurement. To reflect the real world the test data imposes no matching/counterparting between individuals
in AD and those in NL/MCI . The measurements used for analysis of the test data are at 12, 24 and 36
months for all three sets (AD, NL, MCI).

Two classification tasks are considered in [Moore et al., 2019]; AD vs. NL and AD vs. MCI. Binary
logistic regression, which models the log probabilities of the outputs as linear functions of the inputs. This
results in the model being more easily interpreted than more sophisticated classifiers such as random forests.
The input features are selected via Lasso regularisation. The input for LASSO is a vector formed from the three
variables, WholeBrain (w), Hippocampus (h) and Ventricles (v), and either the signature or the log-signature
of the path determined by the variables v, h, and w. The training in [Moore et al., 2019] uses 10-fold cross-
validation. The LASSO regularisation coefficient λ is increased to result in a sparse set of variables to act as
predictors; see [Moore et al., 2019] for full details.

The features selected for each classification task are summarised in Table 9 which is a version of Table 2
in [Moore et al., 2019].

The notation used in Table 9 is as follows. The baseline value of a variable X is denoted by X-BL.
The increment of a variable X are denoted [Incr.X] and correspond to depth one signature terms. Area terms
between variables X and Y are denoted by (X,Y) and correspond to particular combinations of depth two
signature terms. The precise details may be found in [Moore et al., 2019].

59

https://tadpole.grand-challenge.org/


11.3 Early Sepsis Detection Terry Lyons & Andrew D. McLeod

Task Signature Feature Set Log Signature Feature Set
Hippocampus-BL Hippocampus-BL
[Incr.Ventricles] [Incr.Hippocampus]

AD vs. NL (Hippocampus,Time) [Incr.Ventricles]
(Hippocampus,Time)

(Hippocampus,WholeBrain)
Hippocampus-BL Hippocampus-BL

Ventricles-BL Ventricles-BL
AD vs. MCI (Hippocampus,Time) [Incr.Hippocampus]

(Hippocampus,WholeBrain) [Incr.Ventricles]
(Time,Ventricles) (Time,Ventricles)

(Hippocampus,Hippocampus)

Table 9: Comparison of feature sets selected for each classification task in [Moore et al., 2019]—Table 2
in [Moore et al., 2019]

The resulting classifiers achieve at least 90% accuracy on both classification tasks considered on the test
data, see Table 3 in [Moore et al., 2019] for full details of the performance. Whilst the features provided by
the signature method correspond to known AD pathology that can be extracted manually, the path signature
provides a systematic way of automatically generating these features without requiring any prior knowledge of
the pathology.

11.3. Early Sepsis Detection
Sepsis is an overaggressive autoimmune response to infection that can cause life-threatening damage to the
body’s organs. It was estimated that in 2017 sepsis affected 50 million people worldwide and caused 11
million deaths [Morrill et al., 2020]. In America alone it is thought to be responsible for one in three hospital
deaths [Morrill et al., 2020], and the cost of admission and patient care has been estimated to exceed $41.5
billion [Buchman et al., 2020a, Buchman et al., 2020b, Buchman et al., 2020c]. The time of detection is
critically linked to the mortality rate of sepsis. In cases of septic shock, it is known that the risk of death
increases roughly 10% for every hour of delay in antibiotic treatment [Kumar et al., 2006]. Early detection of
sepsis is evidently crucial to improving sepsis management and mortality rates.

The works [Morrill et al., 2019, Morrill et al., 2020] investigate the use of path signature techniques
for early prediction of sepsis. Unlike prior existing machine learning algorithms for this task, the Sepsis-3
definition [Singer et al., 2016] is used to denote the onset of sepsis. The development of the model in [Morrill
et al., 2019] was during the 2019 PhysioNet challenge entitled “Early Prediction of Sepsis from Clinical Data.”
Challenge participants were invited to submit algorithms that were trained on the same set of readily attainable
ICU data and validated under a common performance metric on unseen test data. The data and performance
metrics used are detailed in [Reyna et al., 2020]. The algorithm proposed in [Morrill et al., 2019] was the first
placed entry in the official phase of the challenge [Morrill et al., 2020].

The aim of this section is to present an overview of the method developed in [Morrill et al., 2019]. In
addition to [Morrill et al., 2019], we will use the follow up work [Morrill et al., 2020]. The article [Morrill
et al., 2020] is an extension of the Computing in Cardiology conference proceedings paper [Morrill et al., 2019]
which includes further method details, additional results, and discussion.

The PhysioNet/Computing in Cardiology Challenge 2019 data were sourced from ICU patients in three
separate hospital systems (which we label Hospital A, Hospital B and Hospital C). The data resulting from
Hospital A and Hospital B were split into a publicly available training set and an undisclosed test set, both to
be used for model development and testing. The test set and the data from Hospital C remained private, with
submitted models being scored against these unseen data from all three systems. The training set comprised
of 40 336 patients with 40 features consisting of demographic, vital signs, and laboratory data recorded per
patient. The data was indexed with time at 1-hour increments and predictions were to be made sequentially as
each hour in a patient’s time series using only the information observed up until that time (i.e. without making
use of any future information). A custom utility function (detailed in [Reyna et al., 2020]) was used to score
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the models.
Loosely speaking, the utility function is designed to ensure the following. Firstly, false-positives amongst

patients that never develop sepsis are penalised, whilst correct true negatives score zero. Secondly, for patients
that did develop sepsis, early prediction was penalised and false negatives were more heavily penalised. In
addition correct true positives are rewarded. The penalisation of early prediction was included to promote
predictions being made in the desired 6-hour window directly proceeding the on-set of sepsis time defined
using the Sepsis-3 definition [Singer et al., 2016].

The datasets are first augmented to include a number of additional features thought, based on literature
review and “expert knowledge”, to be useful for discerning the onset of sepsis [Morrill et al., 2020]. The
following hand-crafted features derived from the data are additionally added (see Table 1 in [Morrill et al.,
2019]).

• Shock Index: the ratio of the heart rate to the systolic blood pressure.

• BUN/CR: the ratio of bilirubin to creatinine.

• Counter: variable for the temperature and the laboratory values that records the number of times a given
variable is measured over a pre-determined look-back window. Its inclusion is designed to exploit the
idea that measurement frequency provides an indication of patient health (i.e. an increasing in sampling
rate may indicate physician concern about a patient).

• Max/Min: the maximum and minimum of the vital signs over a pre-determined look-back window.

• PartialSOFA: partial construction of the Sequential Organ Failure Assessment (SOFA) score [Singer
et al., 2016]. The resulting feature is termed PartialSOFA since the dataset did not include all variables
that comprise the SOFA, meaning that the PartialSOFA score was calculated only on the required infor-
mation available in the data. Hence the PartialSOFA score was calculated based on threshold conditions
on each of the platelet count, bilirubin, mean arterial pressure (MAP), and creatinine variables.

• SOFA-Deterioration: Binary label; 1 if PartialSOFA has decreased by 2 in the last 24 hour window.

The PartialSOFA and SOFA-Deterioration variables are included since deterioration of the SOFA score is a
requirement of the Sepsis-3 definition. The size of the look-back windows chosen for the Counter and Max/Min
variables are treated as hyperparameters and optimised during training.

Once the data has been augmented to include these hand-crafted features, the signature transform is ap-
plied to the resulting time series. A sliding window approach is used; signature features are computed for each
time point over a window of pre-determined look-back size. The input paths were augmented to include a time
dimension, and the cumulative sum followed by the lead-lag transformation were applied as further augmenta-
tions prior to truncated signatures being computed. Both the truncation level and the look-back window length
are treated as hyper-parameters to be optimised during training.

The challenge data was pre-labelled with the value 1 at any location of sepsis occurrence or predefined
window around sepsis onset and zero otherwise. The method proposed in [Morrill et al., 2019] creates an
alternative labelling that accounts for information about the utility score to enable the classifier to place greater
importance on points that lead to a larger score if predicted correctly. If Uy(x, t) denotes the utility score of
predicting y for patient x at time t, then the modified utility score (MUS) is defined as UM (x, t) := U1(x, t)−
U0(x, t). It is against this labelling that the regressor is trained.

Stratified five-fold cross-validation, with a uniform distribution of time points and sepsis labels in each
fold, is used for hyper-parameter optimisation. Precise details may be found in [Morrill et al., 2020]. The
final values of the parameters can be found in Table 2 in [Morrill et al., 2019]. They may be summarised as
follows. The Counter variables are computed over a look-back window of size 8, whilst the Max/Min variables
are computed over a look-back window of size 6. The streams given by PartialSOFA, MAP and BUN/CR are
augmented with a time dimension and a lead-lag transformation, before signatures truncated to depth 3 were
computed using a look-back window of size 7. For the remaining non-stationary streams, the cumulative sum
augmentation is applied followed by the lead-lag transformation, before signatures truncated to depth 3 are
computed using a look-back window of size 7.
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The performance of the model using the final hyper-parameter values is recorded via the average utility
score over the five-folds used in cross-validation. On the training data and testing data from Hospital A this
score was 0.442 and 0.433 respectively, whilst on the training data and testing data from Hospital B it was
0.421 and 0.434 respectively. The similar performance on both the training and testing data suggest the model
was not over-fitted when restricted to the same hospital system on which it was trained.

The data from Hospital C was not included in the public training data, and was used only for validation.
The model achieved an average utility score of -0.123 on the data from Hospital C. This is significantly worse
than the performance on the data from Hospital A and Hospital B, highlighting the limitations to using the
method trained on one hospital system to make predictions on a different one [Morrill et al., 2020]. The utility
scores for the model using the final hyper-parameters may be found in Table 1 in [Morrill et al., 2020].

The impact of the various features on the models performance are explored in [Morrill et al., 2020]. The
cross-validated and averaged utility score predictions on the training data for models trained using different
subsets of features are recorded in Table 2 in [Morrill et al., 2020]. Four different subsets of features are
considered; Time only (T), Time + Original 40 features (TO), Time + Original 40 features + Nonsignature
features (TON), and Time + Original 40 features + Nonsignature features + Signature Features (TONS).

The average utility scores achieved using each subset are 0.282 for T, 0.389 for TO, 0.422 for TON and
0.434 for TONS. These scores reveal that the time-only feature is the single most useful feature. Whilst the
inclusion of the signature features does not result in a dramatic improvement (the score increases from 0.422
to 0.434), it nevertheless illustrates that the representation of the information after the signature transformation
is beneficial to learning.

The model from [Morrill et al., 2019] is designed to optimise the predefined utility function. An extension
to allow its use in an in-hospital environment to provide clinically actionable information is proposed in [Mor-
rill et al., 2020] At each time point, the larger the models output value the higher the risk of sepsis. When
a specified operating point threshold is exceeded, the subject is designated as a “sepsis-risk patient”, indicat-
ing that closer monitoring or further tests may be warranted. This operating point threshold can be chosen to
achieve the most clinically meaningful sensitivity and specificity [Morrill et al., 2020].

Returning to the training set of 40 336 patients, in [Morrill et al., 2020] the authors implement this for
a range of operating point thresholds. The results are presented in a confusion matrix where a true negative
represents that no call was made and the person did not develop sepsis, and a true positive represents that
the patient being flagged and developing sepsis “at some point” after this call. The choice of operating point
threshold so that 33% specificity (the proportion of correct positives that were correctly identified) is achieved
results in the confusion matrix presented in Table 10.

Predicted Sepsis Predicted No-Sepsis
Actual Sepsis 1777 1150

Actual No-Sepsis 3554 33855

Table 10: Confusion matrix displaying the number of people predicted as likely to get sepsis compared with
those who actually end up with sepsis with the threshold tuned to 33% specificity. Data originates in Figure 2
in [Morrill et al., 2020].

The signature-based model presented in [Morrill et al., 2019, Morrill et al., 2020] for the early prediction
of sepsis offers a competitive approach to discerning early onset sepsis from health data streams. The Early
Sepsis Detection notebook provides an introduction to implementing the methodology proposed in [Morrill
et al., 2019, Morrill et al., 2020]. The data used to train the model in this notebook are the sequences of
physiological and laboratory-observed measurements contained in the MIMIC-III dataset. This consists of
electronic health records for 40000 patients in intensive care at the at the Beth Israel Deaconess Medical
Center, Boston, Massachusetts, between 2001 and 2012. These data include, for example, patients’ heart
rates, temperatures, and oxygen saturation levels, all recorded repeatedly over time for each patient. The task
considered is to use the classifier to predict, at time t, whether a patient will go on to develop sepsis by time
t+ T , for some pre-determined T > 0, based on the patients measurement sequences recorded up until time t.
The notebook allows one to work through a version of the methodology of [Morrill et al., 2019, Morrill et al.,
2020] in a simplified setting to illustrate the use of signature methods for the early detection of sepsis.
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11.4. Information Extraction from Medical Prescriptions
Medical prescription notes are a valuable source of important patient information that may not be recorded
elsewhere. Manual extraction and annotation is time-consuming and, since it must be done by specialists,
expensive. Natural language processing (NLP) tasks offer an approach to automating these tasks. Advances
in pre-training large-scale contextualised language representations such as ELMo [Peters et al., 2018] and
BERT [Kenton and Toutanova, 2019] have improved the performance of many NLP tasks. Several studies have
fine-tuned BERT to clinical text (which differs substantially from general text) for NLP tasks [Alsentzer et al.,
2019, Peng et al., 2019, Si et al., 2019, Huang et al., 2019]. Many tasks can be formulated as a classification
or regression task, wherein either a simple linear layer or sequential models such as LSTM are added after the
BERT encoding of the input text as task-specific prediction layer [Gu et al., 2021].

BERT’s model architecture does not contain any recurrence or convolution, meaning additional positional
encoding is required to model the order of the sequence (i.e. word order). In [Biyong et al., 2020], the authors
integrate the signature transform method into the Transformer model in order to naturally capture sequential
ordering information in an effective manner.

The model architecture of BERT is composed of N identical layers. Each layer has a multi-head self-
attention mechanism followed by a position-wise fully connected feed forward network. The attention function
takes three input vectors query Q, key K and value V, and generates a weighted sum of the value V, with the
weights given as the softmax of a rescaling of the dot-product QKT (see Section 2 of [Biyong et al., 2020]
for the precise definition). Multi-head attention splits Q, K and V into multiple heads via linear projection,
allowing the model to attend to information at different positions from different representation subspaces in
parallel. Each projected head first goes through the scaled dot-product attention function, then concatenated,
and finally projected once more to output the final values. Positional information is not explicitly modelled by
the Transformer encoder without modifying its inputs to include a representation of absolute position [Biyong
et al., 2020].

The main extension to the Transformer architecture proposed in [Biyong et al., 2020] is replacing this
attention function with a Sig-Attention function. The Attention function itself is first taken, before the outputs
dimension is reduced by an affine map. The truncated signature S(N) for some N ∈ N is taken to give the
final output. A dropout rate (set to be 0.1 in [Biyong et al., 2020]) is used to ensure the output dimension is the
same as the input dimension. The Sig-Attention mechanism is illustrated in Figure 17 below.

Signature

Feed-forward 
(dimensionality reduction)

(Scaled Dot-Product) 
Attention

dsig

dpresig

dmodel

dmodel

Q K V

Sig-Attention

Figure 17: Sig-Attention mechanism—Part of Figure 2 in [Biyong et al., 2020]. Reproduced with permission.
Colour Alterations. Licensed under a Creative Commons Attribution 4.0 International License.

The proposed Additive Multi-Head Sig-Attention model combines the information from the input sequence
with the output of Sig-Attention in different representation subspaces; see Figure 18 below which is part of
Figure 2 in [Biyong et al., 2020]. The model takes the embedding of an input sequence as well as the queries,
keys and values as input As shown in Figure 18, the queries, keys and values as well as the input embeddings
are first linearly projected to have the required dimensions. Sig-Attention is then applied to the query, key and
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value vectors, whilst the signature is taken of the projected input embedding. The two output signatures are
combined to result in one signature vector. Finally all the signature vectors are concatenated and passed onto
the next sub-layer.

Signature Sig-Attention

Linear

dsig

dpresig dmodel

Q K V

Additive Multi-Head Sig-Attention

Linear Linear Linear

X

Concat

dsigdsig

Figure 18: Additive Multi-Head Sig-Attention—Part of Figure 2 in [Biyong et al., 2020]. Reproduced with
permission. Colour Alterations. Licensed under a Creative Commons Attribution 4.0 International License.

A dataset of 3852 distinct prescriptions for beta-blockers, provided by Karolinska University Hospital,
written in Swedish is used for experimentation. Medical practitioners have annotated three labels QUANTITY,
QUANTITY TAG and INDICATION.

• QUANTITY: Total amount of capsules prescribed

• QUANTITY TAG: one of 5 classes labelling the quantity prescribed to the patient:

i. Not Specified: the quantity was not specified on the prescription

ii. Complex: a range of quantities was given and the quantity is an average

iii. PRN: prescription to take only if needed

iv. As Per Previous Prescription: refers to guidance in previous prescription

v. Standard: standard prescription

• INDICATION: one of 5 classes covering the purpose of the prescription:

i. Cardiac

ii. Tremors

iii. Migraine
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iv. Others

v. NA (Not Annotated)

An example annotated prescription is included in Table 11. This is a reproduction of Table 1 in [Biyong et al.,
2020]

Swedish Translated English Indication Quantity Quantity Tag
1 TABLETT FOREBYGGANDE

MOT MIGRAN 1 tablet prevention against migrain Migraine 1 Standard

MOT HOGT BLODTRYCK
OCHHJARTKLAPPNING

2 TABLETTER KLOCKGAN 08:00
1 TABLETT KLOCKAN 18:00

Against high blood pressure
and heart palpitations

2 tablets at 08:00
1 tablet at 18:00

Cardiac-
hypertension

3 Standard

2 TABLETTER KL. 08,
2 TABLETT KL. 20. DAGLIGEN.

OBS KVALLSDOSEN HAR
HOJTS JFRT MED 070427

2 tablets kl. 08
2 tablet kl. 20 Daily.

Note the evening box has
hojts jfrt with 070427

NA 4 Standard

1 tablett vid behov mot stress 1 tablet if needed against stress Anxiety 1 PRN

FOR BLODTRYCK
OCH HJARTRYTM-

For blood pressure
and heart rhythm -

Cardiac-
hypertension-
dysrhythmia

0 Not Specified

1 tabl pA morgonen och
en halv tabl pA kvAllen

fOr hjArtrytmen

1 table in the morning and
a half table in the evening

for heart rhythem

Cardiac-
dysrhythmia 1.5 Standard

1-2 tablett 2 gAnger dagligen 1-2 tablets 2 times daily NA 3 Complex

Table 11: Example prescriptions with translations (via Google translate) and annotations; the final three
columns are the labels of interest that are sought to be extracted automatically. Reproduced variant of Ta-
ble 1 in [Biyong et al., 2020].

The following two approaches are proposed in [Biyong et al., 2020].

• Encode the Swedish text directly using Multilingual BERT (M-BERT) [Kenton and Toutanova, 2019],
and

• Translate the prescriptions and then apply ClinicalBERT [Huang et al., 2019] that is pre-trained on
clinical English.

Both methods are applied to the multi-task learning problem consisting of a regression problem (find the
QUANTITY) and two classification problems (find the QUANTITY TAG and INDICATION). The proposed
Sig-Transformer Encoder (STE) multi-task learning architecture is depicted in Figure 19.

A single linear layer is used as the classifier for QUANTITY TAG whilst two-layer networks are used
for both QUANTITY and INDICATION. Cross-entropy loss is used for the two classification tasks whilst
the mean-square error is used for the regression. The overall loss function is taken to be a weighted sum of
the loss functions for all three tasks. The STE model is compared against both the baseline Base model (i.e.
the architecture of Figure 19 with the STE step removed) and against an LSTM model given by the same
architecture as Figure 19, but with the STE step replaced by an LSTM step. The results are summarised in
Table 12.

Without using translation (i.e. using M-BERT), the addition of LSTM and STE improves performance
for QUANTITY and QUANTITY TAG. Overall, the M-BERT+STE model proposed in [Biyong et al., 2020]
performs best for QUANTITY and QUANTITY TAG. Whilst the proposed methods gives worse performance
for INDICATION, the unanimous poor performance by all models on this task suggests there is an underlying
issue with the class boundaries. It is likely that the aggregation of the original 44 classes to the final 5 classes
has left the new classes much less distinct since each is now formed of a range of topics [Biyong et al., 2020].

Further evidence that the INDICATION task is unexpectedly more challenging is the strong individual
class separation achieved by the M-BERT+STE model in the QUANTITY TAG classification task, illustrated
in Table 13.

The M-BERT+STE model performance is consistent across all classes, and for each class its perfor-
mance is comparable to that of the best model for that particular class. In fact, every model other than
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Figure 19: Proposed multi-task learning architecture with Sig-Transformer Encoder (STE). Figure 4 in [Biy-
ong et al., 2020]. Reproduced with permission. Colour Alterations. Licensed under a Creative Commons
Attribution 4.0 International License.

Model QUANTITY
(MSE)

QUANTITY TAG
(f1 score)

INDICATION
(f1 score)

Base 0.50 0.60 0.08
ClinicalBERT 0.21 0.89 0.09

M-BERT 0.41 0.63 0.10
Base+LSTM 0.45 0.76 0.06

ClinicalBERT+LSTM 0.47 0.64 0.10
M-BERT+LSTM 0.50 0.68 0.02

Base+STE 0.23 0.78 0.03
ClinicalBERT+STE 0.36 0.77 0.06

M-BERT+STE 0.15 0.92 0.05

Table 12: Performance comparisons for information extraction. Table 3 in [Biyong et al., 2020].

ClinicalBERT+STE is considerably out-performed by M-BERT+STE on at least one class. Incorporating
signature transform methods with the self-attention mechanism has enabled the authors of [Biyong et al.,
2020] to create a relatively simple model whose performance is at least comparable with its competitors on the
information extraction tasks considered in [Biyong et al., 2020].

12. Landmark-based Human Action Recognition
Human action recognition (HAR) has a wide range of applications such as video surveillance and behavioural
analysis. The task is to recognise an action from video footage. Landmark-based Human Action Recognition
(LHAR) regards objects as systems of correlated labelled landmarks. Recognising actions from the evolution of
vectors connecting these labelled landmarks is motivated by the moving light-spots experiments in [Johansson,
1973]. They demonstrated that people can detect motion patterns and recognise actions from several bright
spots distributed on a body. The challenge of LHAR is to train a computer to recognise actions based on the
evolution of some set of vectors in a fixed vector space, usually Rd for some d ∈ N.

LHAR uses anonymous data; only the position of a certain number of markers is recorded. The use of
de-identified data is often more suitable. For example, monitoring vulnerable people in their homes to spot
accidents and falls. It is unlikely that many people would be happy to have full video data constantly recorded
from within their homes. However, only having the location of, say, 20 markers recorded, without any person
identifying features, is likely a more palatable option.

Two major challenges associated with LHAR are designing reliable discriminative features for spatial
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QUANTITY TAG (f1 score)
Model Standard APPP PRN Complex NS
Base 0.71 0.50 0.10 0.76 0.95

ClinicalBERT 0.83 0.97 0.89 0.99 0.79
M-BERT 0.94 0.41 0.04 0.81 0.98

Base+LSTM 0.93 0.36 0.99 0.77 0.74
ClinicalBERT+LSTM 0.90 0.23 0.99 0.61 0.49

M-BERT+LSTM 0.29 0.99 0.72 0.47 0.93
Base+STE 0.97 0.84 0.77 0.44 0.88

ClinicalBERT+STE 0.99 0.70 0.85 0.65 0.65
M-BERT+STE 0.86 0.97 1.00 0.89 0.86

Table 13: Performance for individual classes comparison; APPP means “As Per Previous Prescription” and NS
means “Not Specified”. Table 6 in [Biyong et al., 2020].

structural representation and modelling the temporal dynamics of motion. There are two main approaches to
LHAR: joint-based and part-based. The joint-based approach regard the body as a set of points and attempt
to capture correlation among the body joints via the pairwise distances or the joint orientations. The parts-
based approach focuses on connected segments of the set of points. Most methods represent spatial poses
using predefined skeletal structures, only connecting points via paths following the skeleton of the body, see
[Vemulapalli et al., 2014] for example.

Whilst these connections seem intuitive, they are not guaranteed to be the crucial ones for distinguishing
actions. The connections discarded by imposing a skeletal structure may contain valuable non-local infor-
mation. For instance, the non-local displacement between two hand points is a key feature for the action of
clapping. Not using skeletal structure information ensures that any potentially vital non-skeletal connections
are not discarded. A further advantage is that it makes it easier to extend the method to the actions of other
objects. If we are not using skeletal structure, then we need only specify the landmark locations on the body.
We can easily consider other objects by experimenting with landmark location without needing to understand
the underlying structure of this new object.

A limitation of this framework is that the labelled data must all be within the same vector space. We need
to be able to make sense of the difference between two joints, with the distance between them often being
important. This is evidently the case for locations on a body, which are naturally vectors in R3 (or R4 if time
is included). But if the data consisted of recorded emotions, as was the case in Section 11.1, then we would
not be in this framework; there is no sensible notion of what the difference anger - depressed should be, for
example.

The evolution of the connected segments is a path, and thus using the signature to understand this path is
natural. In [Yang et al., 2022], the path signature feature (PSF) transform is used to provide a suitable feature set
for spatial and temporal representation of LHAR. A pose is localised by disintegration into a collection of m-
node sub-paths, with the signatures of these paths encoding non-local and non-linear geometric dependencies.
This offers a resolution to the problematic trade-off between hand-designed local descriptors being insufficient
to capture complex spatio-temporal dependences [Jhuang et al., 2013, Fan et al., 2016], and the deep RNN,
LSTM in particular, models learning features that are not as easily interpreted.

12.1. Path Disintegration and Transformations
The disintegrations considered are Pose Disintegration and Temporal Disintegration. The pose is regarded as
an ordered collection of points in Rd, with the ordering chosen randomly and fixed. The pose disintegration
localises the pose into all possible subposes containing m points. The inherited order converts each subpose
to a unique m-node sub-path that visits each node once. These paths are not restricted to being parts of the
physical body. An illustration of the pose disintegration can be seen in Figure 21. The notation PSFm is used
to refer to computing the path signature features of all possible subposes containingm points in a single frame.

The temporal disintegration splits the interval [0, T ] into over-lapping dyadic intervals. For j ∈ N, the jth
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dyadic level of the resulting hierarchical structure is the collection of subintervals

Dj := Ddyadic
j ∪ Doverlap

j (12.1)

where

Ddyadic
j :=

{[
i

2j
T,
i+ 1

2j
T

]
| i ∈

{
1, . . . , 2j − 1

}}
(12.2)

and

Doverlap
j :=

{[
2k + 1

2j+1
T,

2k + 3

2j+1
T

]
| k ∈

{
1, . . . , 2j − 2

}}
. (12.3)

The inclusion of the overlapping intervals Doverlap
j prevents the interior points i

2j T , for i ∈ {1, . . . , 2j − 1},
being artificially converted to endpoints in the collection Dj . This dyadic decomposition of the interval [0, T ]
is illustrated in Figure 20.

Figure 20: On the left is the standard dyadic collections Ddyadic
0 , Ddyadic

1 and Ddyadic
2 , on the right is the

collections D0, D1 and D2. Image retrieved from Landmark Human Action Recognition Github.

Signatures are computed over all the smaller intervals, reflecting the idea that the low-order signature
terms over all smaller intervals will be more informative than the higher order terms over the entire interval
[0, T ]. The choice of hierarchical level h ∈ N is a trade-off between improving efficiency and introducing local
noise over finer intervals. The notation Dj − PSFm is used to refer to computing the path signature features
of all possible subposes containing m over all the lth level dyadic decomposition Dl for l ≤ j.

Better performance is observed for taking signatures of level two over all of D0, D1 and D2 than taking
signatures of level five over the whole time interval [0, T ] in [Yang et al., 2022]. Whilst using level two
truncations involves simpler and quicker computations than using level five signatures, the level two signatures
on D0, D1 and D2 also result in a smaller feature set. Assuming the path is three-dimensional, the level five
signature over [0, T ] involves 36−1

3−1 = 364 terms. In contrast, the level two signatures over all the dyadic

intervals D0, D1 and D2 involve only 11× 33−1
3−1 = 11× 13 = 143 terms, which is roughly 40% of the size.

12.2. Datasets
The proposed method is trained on four datasets; JHMDB [Jhuang et al., 2013], SBU [Yun et al., 2012],
Berkeley MHAD [Ofli et al., 2013] and NTURGB+D [Shahroudy et al., 2016]. The JHMDB dataset consists
of 928 clips, each containing between 15 and 40 frames, capturing a single person doing one of 21 actions.
The 2D joint positions are manually annotated, and the loss of information due to 2D projection presents an
additional challenge.

The SBU Interaction is a 3D Kinect-based dataset. Kinect sensors are cost effective depth cameras that
are capable of providing reliable joint locations via real-time pose estimation algorithms [Shotton et al., 2013].
SBU contains a total of 282 clips categorised into 8 classes of two-actor interaction. Self-occlusion (when
an object is obscured due to overlapping itself) causes measurement errors in the joint locations, which again
presents an additional challenge.

The Berkeley MHAD dataset is 659 clips captured by a marker-based motion capture system. The 3D
locations of 43 joints are accurately captured using LED markers. There are 384 clips performed by 7 actors
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that are used for training, and 275 clips performed by 5 actors that are used for testing.
The Kinect-based NTURGB+D dataset is one of the largest 3D action recognition datasets and contains

56,000 clips categorised into 60 classes. There is no constraint on the number of actors appearing in each clip
which, together with the large variation in viewpoint, pose a significant challenge for analysing this dataset.

12.3. Method Implementation
Gaussian noise is added over joint coordinates to simulate the errors caused by estimation. Biometric differ-
ences are compensated for by normalising the coordinate value ranges to [−1, 1] over the entire clip. Similarly,
each feature is normalised to the interval [−1, 1]. To obtain a fixed length input, M = 10 clips are uniformly
sampled from each clip.

The pose disintegrations for m = 2 and m = 3 are considered. Since the absolute position may be essen-
tial in some applications (static CCTV monitoring for example) the Invisibility-reset transformation is used to
retain this information in the signature. Further, multi-delayed no-future-pause Lead-Lag transformations with
no-future-pause are considered, with those with smaller delays encoding short-term dependencies, and those
with longer delays encoding long-term dependencies. See Section 2.5 for definitions of these transformations
and Figure 21 for an illustration of the multi-delayed Lead-Lag transformations.
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are  the absolute position of  the  initial point. This simple 
transformation  retains  different  position  information  in 
signatures and thus allows the network to select one and 
suppress the other according to significance to the task.        

4.2.3 Multi-delayed lead-lag transformation 
The lead‐lag transformation proposed in [30], [66], [95] is 
designed to explore the quadratic cross‐variation between 
the original path and its delayed path. To extend its capa‐
bility  to  describe  long‐term  dependencies  of  sequential 
events, our modified lead‐lag transformation, as shown in 
Fig. 2, is constructed by the original path and its multiple 
delayed paths  (instead of one delayed path  in  [30]). We 
denote  the dimension of  a  lead‐lag  transformed path  as 
dLLT.  The  signatures  of  lead‐lag  paths  with  smaller  dLLT 
encode short‐term dependencies, while  those with  larger 
dLLT explore more long‐term dependencies.  

5 FEATURE EXTRACTION FOR HUMAN ACTION 

RECOGNITION 
Our proposed feature set for LHAR, which we describe in 
this section, is outlined in Table 1.  

5.1 Spatial structural features 
First  of  all,  the  basic  information  describing  the  spatial 
structure  is  the d‐dimensional coordinates of each of  the 
N joints of the body. The keyword S‐J denotes the spatial 
coordinate values of the joints. The dimension of this part 
is  SJD N d   for each sampled frame. 

To encode  the spatial context, we use pose disintegra‐
tion with  2m  and  3m  , which means  joint pairs  and 
joint  triples  are  used  as  illustrated  in  Fig.  3.  The  signa‐
tures  of  each  of  these  subpaths  are  computed  to model 

the  spatial  constraints  in  each  frame. The  spatial PSF of 
joint pairs and joint triples are denoted by S‐P‐PSF and S‐
T‐PSF respectively. If the truncation level of the signature 
of pairs and  triples are nSP and nST  respectively,  then  the 
feature dimensions per frame are  2 ( , )SP N SPD C d n  and 

3 ( , )ST N STD C d n   respectively.  Finally,  the  spatial  fea‐
tures from all sampled frames are extracted and collected. 
The dimension of S‐P‐PSF and S‐T‐PSF per  frame  is de‐
noted by S SP STD D D  . 

5.2 Temporal dynamical features 
Inspired by  the works  in  [22],  [23] which  jointly  learned 
the  spatial  and  temporal  contexts  in  a variant  of LSTM, 
we suggest  that  the dynamics of  landmark‐based human 
action can be described by the evolution of spatial context. 
The spatial context herein are the features we extracted in 
section  5.1,  although  other  spatial  features  can  be  used 
alternatively.  From  these,  we  are  going  to  extract  two 
kinds of temporal features T‐J‐PSF and T‐S‐PSF.  

The T‐J‐PSF, illustrated in Fig. 4, is the temporal PSF of 
the evolution of each  joint along  the  time. The evolution 
of each  joint is naturally a time‐sequence, so we consider 
its  time‐incorporated  transformation.  For N‐joint  bodies 
in  d , the dimension of T‐J‐PSF is  ( 1, )TJ TJD N d n   , 
where nTJ  is the truncation level of the signature. 

Since each dimension of the spatial contextual features 
(S‐P‐PSF  and S‐T‐PSF)  characterizes  one particular  spa‐
tial constraint of a pose, the evolution of this spatial con‐
straint along the time forms a spatio‐temporal path which 

 
Fig. 2. The illustration of multi-delayed lead-lag transformation. The
dimension of lead-lag paths is dLLT. The delayed paths are padded
with zeros to ensure a fix length for each dimension. 

 
Fig. 3. The illustration of spatial feature (S-P-PSF and S-T-PSF) ex-
traction. Note that we predefine the priority order of all the N joints (N 
= 15 in this figure). The red quadrangles denote the feature extraction 
of joint pairs, while the blue ellipses denote that of joint triples. All 
possible pairs and triples of joints are considered.  

TABLE 1 
PROPOSED FEATURES FOR LANDMARK-BASED HUMAN ACTION RECOGNITION 

 

 

Figure 21: Illustration of multi-delayed lead-lag transformation. The dimension of lead-lag paths is dLLT .
The delayed paths are padded with zeros to ensure a fixed length for each dimension. Figure 2 in [Yang et al.,
2022]. Reproduced under license from Springer Nature (License Number 5425270874131).

The spatial features extracted by PSF2 with truncation level nSP of the paths corresponding to the pairs
of joints in each frame (i.e. m = 2) are labelled S-P-PSF. The spatial features extracted by the PSF3 with
truncation level nST of the paths corresponding to the triples of joints in each frame (i.e. m = 3) are labelled
S-T-PSF. The truncation levels nSP := 2 and nST := 3 were found to be optimal in Section 6 of [Yang et al.,
2022].

The temporal features extracted by DhTJ
− PSF1 with truncation level nTJ of the paths corresponding

to the evolution of the joint locations (i.e. m = 1) are labelled T-J-PSF. Each dimension of the features S-P-
PSF and S-T-PSF characterises one particular spatial constraint of a pose. The temporal features extracted by
DhTS

−PSF1 with truncation level nTS of multi-delay lead-lag transformations, with no-future-pause, of the
one-dimensional paths corresponding to the evolution of each particular spatial constraint of a pose are labelled
T-S-PSF. The choices of truncation levels nTJ := 5 and nTS := 2 and the choices of the hierarchical levels
hTJ := 3 and hTS := 3 for the dyadic decomposition level were found to be optimal in Section 6 of [Yang
et al., 2022].

Illustrations of the extraction of the temporal features T-J-PSF and T-S-PSF are provided in Figures 23
and 24 respectively.
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TABLE 1 
PROPOSED FEATURES FOR LANDMARK-BASED HUMAN ACTION RECOGNITION 

 

 

Figure 22: The illustration of spatial feature (S-P-PSF and S-T-PSF) extraction (N= 15 in this figure). The red
quadrangles denote the feature extraction of joint pairs, while the blue ellipses denote that of joint triples. All
possible pairs and triples of joints are considered. Figure 3 in [Yang et al., 2022]. Reproduced under license
from Springer Nature (License Number 5425270874131).

Finally, the d-dimensional coordinates of the joint locations at each frame are recorded and labelled S-J.
The features considered in [Yang et al., 2022] are summarised below, starting with the Spatial Structural
Features in each frame.

• S-J: The d-dimensional coordinates of each of the joints

• S-P-PSF: The PSF over each pair of joints up to signature level nSP

• S-T-PSF: The PSF over each triple of joints up to signature level nST

The Temporal Dynamical Features in each frame are as follows.

• T-J-PSF: The temporal PSF over the evolution of each joint up to signature level nTJ

• T-S-PSF: The evolution of each dimension of spatial PSF is treated as a path over which the temporal
PSF up to signature level nTS is extracted

Having extracted the features, we now describe the proposed models architecture. A single-hidden-layer neural
network is chosen for the classifier, with the hidden layer consisting of 64 neurons. The input dimension is
determined by the signature transform (i.e. by S-P-PSF, S-T-PSF, T-J-PSF and T-S-SPF) and the output is a
probability distribution given by a softmax layer over all the class labels in the dataset. Training uses stochastic
gradient descent, with early stopping implemented to allow a maximum of 300 epochs, on the cross-entropy
cost function with a learning rate that decays exponentially in the number of epochs run.

A random proportion of the connections between the input and the single hidden layer are omitted using
Dropconnect, see [Wan et al., 2013], for the purposes of regularisation. The high dimension of the data means
that a high ratio of Dropconnect is required to prevent over-fitting, and the rate is set at 0.95.

70



12.4 Comparison with Specifically-Tailored Methods Terry Lyons & Andrew D. McLeod
 7 

 

delivers  temporal  constraints of  a motion. The  temporal 
PSF of these spatio‐temporal paths is denoted by T‐S‐PSF 
and  illustrated  in Fig. 5. Since  the  signature of a  spatio‐
temporal path (i.e., a 1D path)  is  just  the  increments  to a 
certain power,  the multi‐delayed  lead‐lag  transformation 
is  applied  to  each  path  to  enrich  the  PSF  with  cross‐
variations among events of the path. If the truncation lev‐
el of the signature is nTS and the dimension of the lead‐lag 
paths  is  dLLT,  the  dimension  of T‐S‐PSF  from  all  spatio‐
temporal  paths  is ( , ).TS S LLT TSD D d n  Considering 
there might  exist  complicated or  long‐range  actions,  the 
temporal disintegration  in section 4.1.2 can be applied. If 
so,  the  dimensions  are  ˆ( , 1, )TJ TJ TJD N h d n    and 

ˆ( , , )TS S TS LLT TSD D h d n  where  TJh  and  TSh are  the corre‐
sponding hierarchical levels. 

The dimension of all  temporal PSFs  is  T TJ TSD D D  . 
Finally,  the  total dimension of  spatial  and  temporal  fea‐
tures per clip  is  ( )SJ S TD M D D D     , where M  is  the 
number of sampled frames. Moreover, the spatial compo‐
nents can be covered by the temporal PSFs extracted from 
invisibility‐reset paths which require no sampling step.  

6 EXPERIMENTAL RESULTS AND ANALYSIS 

6.1 Datasets 
Monocular videos recorded by 2D cameras are capable of 
collecting  spontaneous  actions,  but  their  sensitivity  to 
viewpoint variations and occlusions makes recognition a 
difficult task [1]. Intuitively, human body is general in 3D 
space, so marker‐based motion capture systems [13] were 
designed  to  collect  highly  accurate  locations  of  human 
joints. However, they are often expensive and impractical 
for  recording  realistic  action  videos.  Fortunately,  cost‐
effective depth cameras (e.g. Kinect sensor [14]) were de‐
signed  to  provide  reliable  joint  locations  via  real‐time 
pose  estimation  algorithms  (e.g.,  [15]).  Our  method  is 
general enough to be applied to various kinds of data. To 

extensively evaluate  the proposed methods, we conduct‐
ed  experiments on  four datasets  containing  examples of 
all  three  types  of data:  JHMDB  [31],  SBU  [32], Berkeley 
MHAD  [33],  and NTURGB+D  [21].  The  information we 
used  herein  for  action  recognition  is  the  locations  of 
landmarks  in all  the  frames. However,  it  is worth noting 
that  our method  is  flexible  and  additional  information 
such as visibility state or confidence score can be included. 

The JHMDB dataset [31] is a 2D human action dataset. 
There are 928   clips, each clip containing between 15 and 
40  frames. A clip captures only one person doing one of 
21 actions. The 2D joint positions are manually annotated. 
There are 3 splits separating the whole dataset into train‐
ing and testing set. The final result is the average of them. 
The sub‐JHMDB is a subset of JHMDB with the full body 
inside the frame. The challenges are the spontaneity of the 
actions captured by  the clips  from YouTube and  the  loss 
of information due to 2D projection. 

The SBU Interaction [32]  is a 3D Kinect‐based dataset. 
It has 282 clips categorized into 8 classes of two‐actor in‐
teractions,  and  has  30  joints  per  frame.  Its  depth  infor‐
mation suffers from self‐occlusion, causing measurement 
errors in the estimated joint locations. 

The  third dataset  is Berkeley MHAD dataset  [33] cap‐
tured by a marker‐based motion  capture  system.  It  con‐
sists of 659 clips, of which 384 clips, performed by 7 actors, 
are used  for  training  and  275  clips  by  5 different  actors 
are used for testing. The 3D locations of 43 joints captured 
by LED markers are very accurate. 

The Kinect‐based NTURGB+D [21] is one of the largest 
3D action  recognition datasets and contains 56  thousand 
clips  of  60  classes.  The  large  viewpoint  variations  and 
unconstrained  number  of  actors  pose  considerable  chal‐
lenges for analysis of this dataset. 

Note  that  the quantitative analysis was  conducted on 
JHMDB,  and  all  the  parameters were  determined  by  5‐
fold cross validation on the training set of the first split. 

 
Fig. 5. Illustration of temporal features extracted from the evolution of spatial context (T-S-PSF). Each dimension of the spatial features is 
treated equally and individually. 

 
Fig. 4. Illustration of temporal features extracted from the evolution of each corresponding joint (T-J-PSF). 

Figure 23: Illustration of temporal features extracted from the evolution of each corresponding joint (T-J-
PSF). Figure 4 in [Yang et al., 2022]. Reproduced under license from Springer Nature (License Number
5425270874131).
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Fig. 5. Illustration of temporal features extracted from the evolution of spatial context (T-S-PSF). Each dimension of the spatial features is 
treated equally and individually. 

 
Fig. 4. Illustration of temporal features extracted from the evolution of each corresponding joint (T-J-PSF). 

Figure 24: Illustration of temporal features extracted from the evolution of spatial context (T-S-PSF). Each
dimension of the spatial features is treated equally and individually. Figure 5 in [Yang et al., 2022]. Reproduced
under license from Springer Nature (License Number 5425270874131).

12.4. Comparison with Specifically-Tailored Methods
The models performance on the four datasets MHAD, SBU, JHMDB and NTURGB+D is compared the per-
formance of several models developed via other non-signature based techniques in [Yang et al., 2022]. The
results obtained for each of these four datasets are summarised below.

For the JHMDB dataset the off-the-shelf pose estimation called Alphapose (with Poseflow) [Fang et al.,
2017] was used to obtain 17 estimated joints from the RGB videos. The signature method proposed in [Yang
et al., 2022] is compared with the skeleton-based methods DT-FV [Wang and Schmid, 2013], HLPF [Jhuang
et al., 2013], Novel HLPF [Fan et al., 2016], and P-CNN [Chéron et al., 2015], all trained using the evolution
of these 17 joints, in [Yang et al., 2022]. As recorded in [Yang et al., 2022], the accuracy 80.4% achieved
by the Path Signature method [Yang et al., 2022] is better than the accuracy achieved by any of the other
methods ( 65.9% for DT-FV [Wang and Schmid, 2013], 74.6% for P-CNN [Chéron et al., 2015], 76.0% for
HLPF [Jhuang et al., 2013], and 79.6% for Novel HLPF [Fan et al., 2016]).

For the SBU dataset the two human bodies were regarded as a single united system with a total of 30 joints
in 3D. The signature method proposed in [Yang et al., 2022] is compared with the skeleton-based methods Yun
et al. [Yun et al., 2012], Ji et al. [Ji et al., 2014], CHARM [Li et al., 2015], HBRNN [Du et al., 2015], Deep
HBRNN [Zhu et al., 2016], Co-occurrence [Zhu et al., 2016], STA-LSTM [Song et al., 2017], ST-LSTM-
Trust Gate [Liu et al., 2016, Liu et al., 2017a], SkeletonNet [Ke et al., 2017], and GC-Attention-LSTM [Liu
et al., 2017b], all trained using the evolution of the 30 joints, in [Yang et al., 2022]. As recored in Table 6
in [Yang et al., 2022], the accuracy of 96.8% for the Path Signature method [Yang et al., 2022] is better than
the accuracy achieved by any of the other methods (80.3% for Yun et al. [Yun et al., 2012], 86.8% for Ji et
al. [Ji et al., 2014], 83.9% for CHARM [Li et al., 2015], 80.4% for HBRNN [Du et al., 2015], 86.0% for Deep
HBRNN [Zhu et al., 2016], 90.4% for Co-occurrence [Zhu et al., 2016], 91.5% for STA-LSTM [Song et al.,
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2017], 93.3% for ST-LSTM-Trust Gate [Liu et al., 2016, Liu et al., 2017a], 93.5% for SkeletonNet [Ke et al.,
2017], and 94.1% for GC-Attention-LSTM [Liu et al., 2017b]).

The joint locations are recorded precisely enough in the Berkely MHAD dataset to enable methods to
achieve perfect accuracy. The signature method proposed in [Yang et al., 2022] is compared with the skeleton-
based methods Vantigodi et al. [Vantigodi and Babu, 2013], Ofli et al. [Wang et al., 2013], Vantigodi et al.
[Vantigodi and Radhakrishnan, 2014], Kapsouras et al. [Kapsouras and Nikolaidis, 2014], HBRNN [Du et al.,
2015], and ST-LSTM-Trust Gate [Liu et al., 2016, Liu et al., 2017a] on the Berkeley MHAD dataset in [Yang
et al., 2022]. As recorded in Table 7 in [Yang et al., 2022], the perfect accuracy of 100% achieved by the Path
Signature method [Yang et al., 2022] matches the perfect accuracy of 100% achieved by both the HBRNN [Du
et al., 2015] and SL-LSTM-Trust Gate [Liu et al., 2016, Liu et al., 2017a] methods, and is better than the
accuracy achieved by the remaining methods (96.1% for Vantigodi et al. [Vantigodi and Babu, 2013], 95.4%
for Ofli et al. [Wang et al., 2013], 97.6% for Vantigodi et al. [Vantigodi and Radhakrishnan, 2014], and 98.2%
for Kapsouras et al. [Kapsouras and Nikolaidis, 2014]).

For the NTURGB+D dataset, experiments were conducted on recognising both the cross-subject (i.e. ac-
tions performed by different people) and the cross-view (i.e. actions recorded from different view points) tasks.
This involved an initial classification step to sort the data into 1-body and 2-body actions, before extracting the
joints to be used. For both experiments the signature method proposed in [Yang et al., 2022] is compared
with the skeleton-based methods Dynamic Skeletons [Hu et al., 2015], HBRNN [Du et al., 2015], Part-aware
LSTM [Shahroudy et al., 2016], ST-LSTM-Trust Gate [Liu et al., 2016, Liu et al., 2017a], STA-LSTM [Song
et al., 2017], SkeletonNet [Ke et al., 2017], Joint Distance Maps [Li et al., 2017], and GC-Attention-LSTM [Liu
et al., 2017b] in [Yang et al., 2022]. As recorded in Table 9 in [Yang et al., 2022], for the cross-subject task
recognition, the accuracy of 78.3% achieved by the Path Signature method [Yang et al., 2022] is better than
the accuracy achieved by any of the other methods (60.2% for Dynamic Skeletons [Hu et al., 2015], 59.1% for
HBRNN [Du et al., 2015], 62.9% for Part-aware LSTM [Shahroudy et al., 2016], 69.2% for ST-LSTM-Trust
Gate [Liu et al., 2016,Liu et al., 2017a], 73.4% for STA-LSTM [Song et al., 2017], 75.9% for SkeletonNet [Ke
et al., 2017], 76.2% for Joint Distance Maps [Li et al., 2017], and 74.4% for GC-Attention-LSTM [Liu et al.,
2017b]). Additionally, as recorded in Table 9 in [Yang et al., 2022], for the cross-view task recognition, the
accuracy of 86.3% achieved by the Path Signature method [Yang et al., 2022] is better than the accuracy
achieved by any of the other methods (65.2% for Dynamic Skeletons [Hu et al., 2015], 64.0% for HBRNN [Du
et al., 2015], 70.3% for Part-aware LSTM [Shahroudy et al., 2016], 77.7% for ST-LSTM-Trust Gate [Liu et al.,
2016, Liu et al., 2017a], 81.2% for STA-LSTM [Song et al., 2017], 81.2% for SkeletonNet [Ke et al., 2017],
82.3% for Joint Distance Maps [Li et al., 2017], and 82.8% for GC-Attention-LSTM [Liu et al., 2017b]).

The experiments conducted in [Yang et al., 2022] illustrate that, within the class of recognising actions
via the evolution of connected segments between landmark locations, the Path Signature method proposed
in [Yang et al., 2022], a relatively simple linear shallow fully-connected neural network, achieves comparable
results to other more complex models.

12.5. Demo Notebook
The Landmark Human Action Recognition python notebook, created by Peter Foster and Kevin Schlegel, is
based on [Yang et al., 2022]. It provides an introduction to the methodology of [Yang et al., 2022], presenting
python code that uses the JHMDB dataset to generate a feature set as described in Section 12.3, before training
a simple classifier action classifier using this feature set (again following the process discussed in Section 12.3).

The learning uses the PyTorch python package. The correct version of PyTorch to install depends on the
particular hardware and operating system used. Consequently it is highly recommended to install PyTorch
manually following the official instructions. After installing PyTorch, following the notebook is straightfor-
ward and once complete, the learnt classifier achieves an accuracy of 67.54%. This is lower than the 80.4%
reported in [Yang et al., 2022] (see Table 5 in [Yang et al., 2022]) since the notebook chose path transforma-
tions for the purpose achieving a high speed of computations (with the feature set generated within seconds
and the network training completing within a few minutes) rather than for maximal accuracy.

By changing the path transformations and combining feature vectors of different sets of transformations
the accuracy can be increased. This notebook highlights the simplicity of the signature techniques; within 20
minutes it is possible to use the method proposed in [Yang et al., 2022] on a CPU to train a classifier that
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achieves comparable accuracy with a specialised tailor-made models, see Table 5 in [Yang et al., 2022].

13. Distribution Regression via the Expected Signature
Many real-world tasks fall within the Distribution Regression framework, where the aim is to learn the func-
tional relationship between multiple time-series and a single output. Examples range from determining the
temperature of a gas from the trajectories of particles [Hill, 1986, Reichl, 2016, Schrödinger, 1989], to using
high-resolution climatic data to predict overall end-of-year crop yields [Panda et al., 2010, Dahikar and Rode,
2014, You et al., 2017], and estimating mean-reversion parameters from observed financial market dynam-
ics [Papavasiliou and Ladroue, 2011, Gatheral et al., 2018, Balvers et al., 2000].

In Section 6, an approach to distribution regression via the expected signature was outlined. This approach
is implemented in [Lemercier et al., 2021], and we will provide a more detailed summary of their methodology

within this section. Consider M input-output pairs
{{

xi,j
}Ni

j=1
, yi
}M

i=1
where each pair i is given by a target

yi ∈ R and a collection of Ni time-series xi,j =
{(
t1, x

i,j
1

)
, . . . ,

(
tli,j , x

i,j
li,j

)}
of lengths li,j ∈ Z≥1, time

stamps t1 ≤ . . . ≤ tli,j and values in a b-dimensional Banach space W . By using the method of transforming
a stream of values into a stream of increments outlined in Subsection 2.3, we update each stream xi,j to now
be a stream of increments taking its values in a d-dimensional Banach space V . In particular, we must have
that d = 2(b+ 1) ∈ Z≥2 and that, as a set, V =W × Rb+2.

Fix a compact interval [a, b] ⊂ R. Following the notation used in [Lemercier et al., 2021], we let
C([a, b], V ) denote the set of paths resulting from the removal of all the tree-like (see [Hambly and Lyons,
2010]) paths from V1([a, b], V ). This has no practical impact on the following strategies [Lemercier et al.,
2021]. Consider, for each i ∈ {1, . . . ,M} and j ∈ {1, . . . , Ni} the contour Γ xi,j resulting from the concate-
nation of the entries of xi,j . Choose a parameterisation xi,j : [a, b] → V of Γ xi,j such that xi,j ∈ C([a, b], V ).

After doing so, we have M groups of input-output pairs of the form({
x1,j : [a, b] → V

}N1

j=1
, y1 ∈ R

)
, . . . ,

({
xM,j : [a, b] → V

}NM

j=1
, yM ∈ R

)
. (13.1)

The collection of trajectories in group i is summarised by considering the measure δi := 1
Ni

∑Ni

j=1 δxi,j ∈
PC([a, b], V ) where δxi,j is the Dirac measure centred at xi,j . The input-output pairs in (13.1) can be repre-
sented as (

δ1 ∈ P
(
K
)
, y1 ∈ R

)
, . . . ,

(
δM ∈ P

(
K
)
, yM ∈ R

)
(13.2)

and we aim to learn a function F : PC([a, b], V ) → R from the pairs in (13.2).
The expected signature can characterise probability measures on paths (cf. Theorem 6.1) and two methods

for distribution learning using the expected signature are proposed in [Lemercier et al., 2021]. The first is the
approach outlined at the end of Section 6. To provide the details of this approach, we first recall that the
pathwise expected signature ΦPath : PC([a, b], V ) → C([a, b], T ((V ))) is defined by

ΦPath(µ)t := Eµ

[
Sa,t(X)

]
. (13.3)

A consequence of the universality of the pathwise expected signature (cf. Theorem 6.1) is that for any compact
subset K ⊂ C([a, b], V ), if F denotes our target function we want to learn, then

F |P(K) ∈ Span
{
Sa,b

(
ΦPath(µ)

) J | µ ∈ P(K), J = (j1, . . . , jk) ∈ {1, . . . , k}d, k ∈ N0

}
=: A(K).

(13.4)
The SES method of [Lemercier et al., 2021] uses a truncation of A(Z), where Z :=

{
δi | i ∈ {1, . . . ,M}

}
,

as the feature functions before applying linear regression to find the optimal combination with respect to the
mean squared error (MSE). The truncation is in terms of the length of the multi-indices allowed, i.e. in (13.4)
we restrict to k ≤ K0 for some K0 ∈ Z≥1 so that only the coordinate iterated integrals of order up to K0 are
used.

The second method introduced in [Lemercier et al., 2021] combines the expected signature with a Gaus-
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sian kernel. Recall that the expected signature S : C([a, b], V ) → T ((V )) is defined by

S(µ) := Eµ

[
Sa,b(X)

]
=

∞∏
n=0

Eµ

[
Sn
a,b(X)

]
. (13.5)

The KES model proposed in [Lemercier et al., 2021] considers the kernel k : PC([a, b], V )×PC([a, b], V ) → R
defined by

k(µ, ν) := exp
(
− σ2

∣∣∣∣S(µ)− S(ν)
∣∣∣∣2
T ((V ))

)
(13.6)

for σ > 0. It is established that the kernel k is universal in the sense that if K ⊂ C([a, b], V ) is compact,
then the associated Reproducing Kernel Hilbert Space (RKHS) is dense in C0

(
P(K);R

)
(see Theorem 3.3

in [Lemercier et al., 2021]).
To evaluate k(δi, δj) for i, j ∈ {1, . . . ,M} we first compute that

∣∣∣∣S(δi)− S
(
δj
)∣∣∣∣2

T ((V ))
=

∣∣∣∣∣
∣∣∣∣∣ 1Ni

Ni∑
k=1

Eδ
xi,k

[
Sa,b(X)

]
− 1

Nj

Nj∑
l=1

Eδ
xj,l

[
Sa,b(X)

]∣∣∣∣∣
∣∣∣∣∣
2

T ((V ))

=

∣∣∣∣∣
∣∣∣∣∣ 1Ni

Ni∑
k=1

Sa,b

(
xi,k

)
− 1

Nj

Nj∑
l=1

Sa,b

(
xj,l
)∣∣∣∣∣
∣∣∣∣∣
2

T ((V ))

= Eii + Ejj − 2Eij

where

Eij :=
1

NiNj

Ni∑
k=1

Nj∑
l=1

〈
Sa,b

(
xi,k

)
, Sa,b

(
xj,l
)〉

T ((V ))
=

1

NiNj

Ni∑
k=1

Nj∑
l=1

Kxi,k,xj,l(a, b). (13.7)

In (13.7), K·,·(·, ·) denotes the signature kernel discussed in Section 8. For the readers convenience, we recall
that if x ∈ V1([a, b], V ) and y ∈ V1([c, d], V ) then Kx,y(s, t) :=

〈
Sa,s(x), Sc,t(y)

〉
T ((V ))

for s ∈ [a, b]

and t ∈ [c, d] (cf. (8.1)). The relatively simple numerical scheme developed in [Salvi et al., 2021] (see
Section 8) allows the inner products in (13.7) to be computed by a simple call to any numerical PDE solver of
choice [Lemercier et al., 2021].

The KES model uses the maps µ 7→ k(µ, δi) for i ∈ {1, . . . ,M} for feature functions before applying
linear regression to optimise the linear combination with respect to the mean squared error (MSE).

In Section 5 of [Lemercier et al., 2021], the performance of the KES and SES models are compared
with the performance of DeepSet method [Zaheer et al., 2017] and other existing kernel-based methods for
a variety of tasks. The kernel-based techniques considered all correspond to the same general framework.
Distributions µ are first mapped to a RKHS H1 via the map µ 7→

∫
X
k1(·, x)µ(dx) where k1 : X ×X → H1

is the reproducing kernel for H1. A second kernel k2 is then used for the regression step to approximate a
function F : H1 → R via the minimisation of a loss function. A more detailed summary may be found in
Section 4 of [Lemercier et al., 2021], with the full details appearing in [Smola et al., 2007], [Muandet et al.,
2012] [Flaxman, 2015], [Szabó et al., 2016], [Law et al., 2018]. The notation DR-k1 refers to the model
produced by choosing k2 to be a Gaussian kernel.

The particular kernel-based models considered are DR-RBF, DR-Matern32 and DR-GA, where GA refers
to the Global Alignment kernel for time-series from [Cuturi et al., 2007], and the definition of all three may
be found in Appendix B of [Lemercier et al., 2021]. Kernel Ridge Regression is used to train KES and DR-k1
for all choices of k1 whilst Lasso Regression is used for SES. All models are run 5 times on each task with the
mean and standard deviation of the predictive MSE recorded. The hyper-parameters of KES and DR-k1 were
selected by cross-validation on the training set of each run. Full details of the implementation can be found in
appendix B of [Lemercier et al., 2021].

The first experiment considered determining the temperature T of an ideal gas. The simulation modelled
50 different gases, each consisting of 20 particles, by randomly initialising all velocities and letting the particles
evolve at constant speed. The task is to learn T (sampled uniformly at random from [1, 1000]) from the set of
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trajectories traced by the particles in the gas. The complexity of the large-scale dynamics depends on both T
and the radius of the particles. The results of two experiments, one where particles have a small radius (few
collisions) and another where they have a bigger radius (many collisions), are presented in Table 14.

Model Predictive MSE - Few Collisions Predictive MSE - Many Collisions
DeepSets 8.69± 3.74 5.61± 0.91
DR-RBF 3.08± 0.39 4.36± 0.64

DR-Matern32 3.54± 0.48 4.12± 0.39
DR-GA 2.85± 0.43 3.69± 0.36

KES 1.31± 0.34 0.08± 0.02
SES 1.26± 0.23 0.09± 0.03

Table 14: Inferring the temperature of an ideal gas. Predictive MSE have been scaled by a factor of 100; if X is
a predictive MSE value appearing in this table, then the actual predictive MSE is X/100. Table 1 in [Lemercier
et al., 2021].

The performances are comparable in the simpler setting, with KES and SES being slightly better. In the
more collisions setting the KES and SES models significantly out-perform all other methods.

The fractional Ornstein–Uhlenbeck (fOU) process σt = exp(Pt), with dPt = −a(Pt −m)dt + vdBH
t

for a,m, v ≥ 0 and BH
t denoting a fractional Brownian motion of Hurst parameter H ∈ (0, 1), is used as a

model for volatility [Arribas et al., 2020]. Due to findings in [Gatheral et al., 2018], H is chosen to be 0.2
The authors consider the task of estimating the mean-reversion parameter a from simulated sample paths of
σt in [Lemercier et al., 2021]. For this purpose, 50 mean-reversion values {ai}50i=1 ⊂

[
10−6, 1

]
are chosen

uniformly, before each ai is regressed on a collection of N ∈ {20, 50, 100} (time-augmented) trajectories{
σi,j
t

}N

j=1
of length 200. The results, presented in Table 15, illustrate that the models KES and SES out-

perform the others, and that the performance of both KES and SES progressively with the number of samples
N .

Model Predictive MSE
N=20 N=50 N=100

Deepsets 74.43± 47.57 74.07± 49.15 74.03± 47.12
DR-RBF 52.25± 11.20 58.17± 19.05 44.30± 7.12

DR-Matern32 48.62± 10.30 54.91± 12.02 32.99± 5.08
DR-GA 3.17± 1.59 2.45± 2.73 0.70± 0.42

KES 1.41± 0.40 0.30± 0.07 0.16± 0.03
SES 1.49± 0.39 0.33± 0.12 0.21± 0.05

Table 15: Estimating mean-reversion parameters. Predictive MSE have been scaled by a factor of 1000; if X is
a predictive MSE value appearing in this table, then the actual predictive MSE is X/1000. Table 2 in [Lemercier
et al., 2021].

The final task considered in [Lemercier et al., 2021] is a crop yield prediction task. The goal is to predict
the yield of wheat crops over a region from the longitudinal measurements of climatic variables recorded across
different locations of the region. The Eurostat dataset containing the total annual regional yield of wheat crops
in mainland France - divided in 22 administrative regions - from 2015 to 2017 is used. Climatic measurements
(temperature, soil humidity and precipitation), recorded at a frequency of every 6 hours, were extracted for
each region. The total number of recordings varies across regions, and half of each regions recordings were
randomly discarded as a further subsampling step. In addition to the MSE, the mean absolute percentage error
(MAPE) was recorded. The baseline method predicts the average yield calculated from the training set. The
results are presented in Table 16. Both the KES model and the SES model achieve larger improvements over
the baseline than the other methods, with the SES model providing the best performance.
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Model MSE MAPE
Baseline 2.38± 0.60 23.31± 4.42
DeepSets 2.67± 1.02 22.88± 4.99
DR-RBF 0.82± 0.22 13.18± 2.52

DR-Matern32 0.82± 0.23 13.18± 2.53
DR-GA 0.72± 0.19 12.55± 1.74

KES 0.65± 0.18 12.34± 2.32
SES 0.62± 0.10 10.98± 1.12

Table 16: Predicting wheat crop yield. Table 3 in [Lemercier et al., 2021].

14. Conformance and SigMahaKNN Method for Anomaly Detection
Anomaly detection is the task of determining whether a given observation is unusual compared to a corpus of
observations that have been deemed to be usual. It arises in numerous fields such as medicine [Hauskrecht
et al., 2013], financial fraud [Nian et al., 2016] and cybersecurity [Jones and Sielken, 2000]. A natural ap-
proach is to use a distance metric and view an event as an anomaly if it is at least some distance from the set
of observations. Approaches to unsupervised anomaly detection for multivariate data include density-based
approaches [Breunig et al., 2000], clustering [He et al., 2003], random forests [Liu et al., 2012], support vector
machines [Amer et al., 2013], neural networks [Chalapathy and Chawla, 2019] and nearest neighbour-based
approaches [Hautamaki et al., 2004,He and Wang, 2007,Sarmadi and Karamodin, 2020]. The article [Pimentel
et al., 2014] surveys a wide-range of anomaly detection techniques.

Throughout the remainder of this section we consider the following generic problem framework. We
assume that we have a corpus C of observations that are all deemed to be normal. The aim is to use this corpus
C to determine whether a new observation outside of C is an anomaly. In this setup we assume that the corpus
C is not polluted; no point within this given corpus C should be considered anomalous. In particular, we do not
consider the separate challenge of dealing with a polluted corpus where it is possible for points in the given
corpus to be anomalous.

It is important to fix a sensible notion of what determines an outlier. It may initially seem tempting to
determine an outlier by its difference to most other instances; i.e. by comparison to some averaged quantity
determined by the entire corpus C. However, this viewpoint runs the risk of incorrectly deeming data points to
be outliers.

For an example of incorrectly deeming a data point to be an outlier, suppose we are interested in the time
taken by a person to run 100m. Assume we have an initial large corpus C of people that contains at least one
Olympic level sprinter. Let µC denote the average time taken to run 100m taken over the corpus C. If a new
persons time is compared to µC , it is likely that an Olympic sprinter would be considered an outlier. But of
course they are not an outlier since there is at least one other Olympic sprinter exhibiting similar performance
amongst the corpus C.

For an example of incorrectly deeming a data point to not be an outlier, assume we have a collection of
points C ⊂ S1 where S1 := {x ∈ R2 | |x| = 1} ⊂ R2 denotes the unit-circle in R2 with respect to the
Euclidean distance on R2. Assume that every point (x, y) ∈ R2 satisfies that the angle tan−1(y/x) is rational.
Provided the cardinality of C is sufficiently large, the mean of C will be the origin (0, 0) ∈ R2. Then suppose
(z, w) ∈ S1 with tan−1(w/z) ∈ R \ Q. The distance of (z, w) to the mean (0, 0) is the same as the distance
of any point (x, y) ∈ C to (0, 0) (i.e. the distance is 1) and hence any distance-to-the-mean based anomaly
detection procedure will not deem (z, w) an outlier. But (z, w) making an irrational angle to the positive x-axis
means it differs from every point in the corpus C, and therefore it should be an outlier.

With this in mind, a more useful point-of-view is to determine outliers by not being similar to any other
instance within the dataset. This avoids the issue of incorrectly deeming a rare observation as anomalous. But,
from this point-of-view, it is important to allow the corpus of observations that are deemed to be “normal” to
be updated over time; after observing a rare event that is nevertheless not an anomaly, we want to add it to the
“normal” corpus to ensure that future observations of this event will not be classified as an anomaly.

The k-nearest neighbour (k-NN) approach uses this idea by comparing an instance to its k nearest neigh-
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bours within the dataset. It is based on the assumption that usual data points have close neighbours in the
training set, while unusual points are located far from their neighbours [Hautamaki et al., 2004]. Loosely, a
point is declared an outlier if it is located far from its k-nearest neighbours. The choice of k can be treated as a
hyper-parameter to be optimised.

The k-NN approach requires one to make a choice of distance metric to use for the determination of
a points k-nearest neighbours. The Mahalanobis distance [Mahalanobis, 2018], providing a notion of dis-
tance between a point and a distribution, is a popular choice considered in the works [Si et al., 2020, Sarmadi
and Karamodin, 2020], for example. The recent work [Shao et al., 2020] introduces the variance norm as a
data-driven metric that offers a mathematically rigorous extension of the Mahalanobis distance. In particu-
lar, the variance norm coincides with the Mahalanobis distance when the sample covariance matrix is finite-
dimensional and has full column rank [Shao et al., 2020]. However, unlike the Mahalanobis distance, the vari-
ance norm remains well-defined when these assumptions are not satisfied. As an example, multi-collinearity
may often lead to data exhibiting rank-deficiency [Shao et al., 2020].

We turn our attention to the anomaly detection method proposed in [Shao et al., 2020] of using a notion
of conformance to determine whether an entire stream is an anomalous object compared to a corpus of normal
streams. A version of this work first appeared in 2020 [Perez Arribas et al., 2020]. Our presentation in this
section focuses on the majorly updated version of the article [Shao et al., 2020] that appeared in December
2023.

Unlike earlier tasks considered in this article, anomaly detection is often semi-supervised. The data for
training consists of a collection of streams of increments, with the collection denoted by ΩS(V ) to match our
notation, that are normal objects. Only the normal objects are available during training, unlike the availability
of two types of objects in binary classification problems. In fact, the anomaly detected might not even belong
to the same class as the normal objects; their only defining characteristic is that they are different from all the
objects in the corpus. A brief outline of the approach proposed in [Shao et al., 2020] is the following.

i. Transform each stream x ∈ ΩS(V ) to its path signature in T ((V )).

ii. Fit the data-driven variance norm to the resulting corpus of path signatures in T ((V )).

iii. Use the nearest neighbour algorithm in the tensor algebra T ((V )) as a downstream metric-based anomaly
detector.

Whilst the variance norm is considered on the tensor algebra T ((V )) (or possibly on truncations of the tensor
algebra), it actually makes sense in a general Banach space setting. Thus, to both match the framework assumed
in [Shao et al., 2020] and avoid clashing with the notation we have adopted throughout this article, we fix a
(possibly infinite dimensional) Banach space W and explain how the variance norm is defined with respect to
a finite collection of elements C = {w1, . . . , wn} ⊂W for some integer n ∈ Z≥1.

When dim(W ) < ∞ one can consider the Mahalanobis distance in this setting. To be more precise, we
recall that if D is a distribution with mean µ and positive-definite covariance matrix S, then the Mahalanobis
distance between a point y and the distribution D is defined to be

dM (y,D) :=
√

(y − µ)TS−1(y − µ) (14.1)

where the superscript T denotes taking the transpose. If we take D := 1
n

∑n
i=1 δwi to be the empirical

distribution summarising the corpus C then µ = µC := 1
n

∑n
i=1 wi and S = (X − 1nµC)

T (X − 1nµC)
where X is the (n× d) matrix whose rows are the elements w1, . . . , wn with respect to some basis of W , and
1n := (1, . . . , 1) ∈ Rn. Then the Mahalanobis distance of y ∈ W to the empirical distribution summarising
the corpus C is

dM (y,X) :=

√
(y − µC)T [(X − 1nµC)T (X − 1nµC)]

−1
(y − µC). (14.2)

Two limitations of (14.2) observed in [Shao et al., 2020] are:

• Computing a distance to the mean for anomaly detection may not be suitable for certain situations. The
example of having the corpus C uniformly distributed in the Euclidean unit circle S1 ⊂ R2 discussed
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at the start of this section illustrates this point. To provide a second example, let S2 ⊂ R3 denote the
Euclidean unit sphere in R3, i.e. S2 :=

{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1

}
. Then suppose the corpus

C is uniformly distributed in S2
z=0 :=

{
(x, y, z) ∈ S2 | z = 0

}
. Provided the cardinality of the corpus C

is large enough, the mean will be the origin (0, 0, 0) ∈ R3. Hence in terms of the distance to the mean,
the point (0, 0, 1) ∈ S2 is not anomalous compared to the corpus C. However, it evidently should be
classified as an anomaly since it differs from every point in the corpus C.

• It is unclear how to proceed when the empirical distribution covariance matrix (X−1nµC)
T (X−1nµC)

is singular. This is often the case when, for example, the streamed data exhibits multi-colinearity between
the channels.

These limitations are addressed by the variance norm introduced in [Shao et al., 2020]. We now define this
notion in the setting of the corpus C = {w1, . . . , wn} ⊂ W , and stress that there is no assumption made on
the dimension of W . Let µC := 1

n

∑n
i=1 wi be the mean of the corpus C. We first define a bilinear form

q :W ∗ ×W ∗ → R by setting, for σ, φ ∈W ∗,

q(σ, φ) :=

n∑
i=1

σ(wi − µC)φ(wi − µC). (14.3)

Subsequently define a map p :W ×W → R by setting, for w, u ∈W ,

p(w, u) := sup
{
σ(w − µC)σ(u− µC) | σ ∈W ∗ with q(σ, σ) ≤ 1

}
. (14.4)

Then the variance norm of w ∈W is defined to be

||w||var :=
√
p(w,w). (14.5)

When W is finite dimensional, the following key properties of the variance norm ||·||var are established in
Theorem 3.1 in [Shao et al., 2020].

Theorem 14.1 (Properties of || · ||var when dim(W ) < ∞; Theorem 3.1 in [Shao et al., 2020]). Assume
W is a finite dimensional real Banach space, n ∈ Z≥1 and C = {w1, . . . , wn} ⊂ W . Fix a basis for W
and let X be the matrix whose rows are the elements w1, . . . , wn expressed with respect to this basis. Let
1n := (1, . . . , 1) ∈ Rn and µC := 1

n

∑n
i=1 wi be the mean of the corpus C. Then the following properties are

true.

(A) If w ∈ Span(C) then ||w||2var = p(w,w) = (w − µC)
T
[
(X − 1nµC)

T (X − 1nµC)
]†
(w − µC) where

the superscript † is used to denote the Moore-Penrose pseudo-inverse.

(B) If w /∈ Span(C) then ||w||2var = p(w,w) = ∞.

We stress that the choice of a basis of W in Theorem 14.1 is purely for the purposes of expressing the matrix
X . The result itself is not dependent on the choice of basis; one could select any other basis and obtain the
same result, only now with the matrix X expressed with respect to the new basis of W instead.

Using the variance norm we define the conformance distance of an element w ∈ W to the corpus C is
defined to be (see Definition 3.2 in [Shao et al., 2020])

dC(w, C) := min
i∈{1,...,n}

∣∣∣∣w − wi

∣∣∣∣2
var
. (14.6)

Thus in the case that W is finite dimensional we have, via Theorem 14.1, for every w ∈ W that either
dC(w, C) = ∞ if w /∈ Span(C), or

dC(w, C) = (w − wi − µC)
T
[
(X − 1nµC)

T (X − 1nµC)
]†
(w − wi − µC) (14.7)
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for some i ∈ {1, . . . , n} if w ∈ Span(C). It follows from (14.7) that if the matrix X has full column rank and
w ∈ Span(C) then the conformance distance is equal to the nearest neighbour Mahalanobis distance [Shao
et al., 2020].

Allowing the conformance distance to be infinity in some cases is a distinction from most Mahalanobis
distance based anomaly detection methods [Shao et al., 2020]. But this provides the benefit of avoiding an
insensitivity introduced by the use of the pseudo-inverse of the matrix (X−1nµC)

T (X−1nµC). As explained
in section 3.2.2 of [Shao et al., 2020], the quantity (w−wi−µC)

T
[
(X−1nµC)

T (X−1nµC)
]†
(w−wi−µC)

remains invariant under translation ofw by a particular class of elements z ∈W . Loosely, the class of elements
is determined via the SVD of the matrix X; see section 3.2.2 in [Shao et al., 2020] for full details.

This is problematic from an anomaly detection perspective since the class of elements z ∈ W for which
this quantity is invariant under w 7→ w+ z enables one to map w ∈ Span(C) to an element w+ z /∈ Span(C).
Being outside Span(C) ought to make w+ z an anomaly; but the invariance means it will not be marked as an
outlier by a method based solely on the pseudo-inverse. However, the conformance distance does mark it as
an exceptional point by returning the value ∞; despite such elements determining a different type of anomaly,
the conformance distance remains able to detect them [Shao et al., 2020].

We now illustrate how the variance norm and conformance distance are used in [Shao et al., 2020] to
define the SigMahaKNN method for detecting anomalies in streamed data. In the notation used in this article,
the SigMahaKNN method is developed in the setting that V := Rd for some integer d ∈ Z≥1. That is, for an
integer M ∈ Z≥1, we have a collection of streams of increments ΩS(Rd) =

{
x1, . . . , xM

}
⊂ S

(
Rd
)
. The

SigMahaKNN method is designed to classify whether a stream x ∈ S
(
Rd
)
\ Ω

S
(
Rd
) is an outlier compared

to the collection Ω
S
(
Rd
).

We first pick an integer N ∈ Z≥1 and consider the corpus C :=
{
S(N)( x) | x ∈ ΩS(Rd)

}
⊂ T (N)

(
Rd
)

of elements in the truncated tensor algebra T (N)
(
Rd
)

obtained by taking the truncation to depth N of the
signature of each stream x ∈ Ω

S
(
Rd
) (cf. Section 3). Recalling Subsection 2.25, we can view the corpus C as

a collection of M points in the Euclidean space Rm(d,N) for

m = m(d,N) :=

N∑
j=0

dj =

{
N + 1 if d = 1
dN+1−1

d−1 if d ≥ 2.
(14.8)

For notational convenience, we let C = {z1, . . . , zM} ⊂ RM . Define an empirical measure δC := 1
M

∑M
j=1 δzj

summarising C (cf. Section 13), and subsequently let µC := 1
M

∑M
j=1 zj denote its mean. Finally, to match the

notation adopted in [Shao et al., 2020], we let ||·||SigN (C) denote the conformance distance dC(·, C) defined by
(14.6) for the corpus C ⊂ Rm.

It is ||·||SigN (C) that determines the anomaly score for the SigMahaKNN algorithm; streams with con-
formance distance higher than a user-determined threshold are anomalies. That is, suppose we determine an
appropriate threshold a > 0. Then let x ∈ S

(
Rd
)

be a stream that is not in the original collection Ω
S
(
Rd
).

The SigMahaKNN method determines whether x is an anomaly compared to the collection Ω
S
(
Rd
) as follows.

(A) Compute S(N)( x) ∈ T (N)
(
Rd
) ∼= Rm, the truncated to depth N signature of the stream x.

(B) Compute
∣∣∣∣S(N)( x)

∣∣∣∣
SigN (C), the conformance distance of S(N)( x) relative to the corpus C.

(C) If
∣∣∣∣S(N)( x)

∣∣∣∣
SigN (C) > a then the stream x is classified as an anomaly; otherwise the stream x is

classified as normal.

An obvious question is how the threshold value a > 0 should be determined. The authors propose using the
nearest neighbour distance to set an appropriate threshold in [Shao et al., 2020]. This is done as follows.

(A) Randomly split C = C1 ⊔ C2 into two equal-sized parts C1 and C2.

(B) Compute the empirical cdf of the nearest neighbour distance for C1 using C2 as the corpus.
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(C) Choose an appropriate tail quantile in the empirical cdf to set the threshold value a > 0.

The choice of the depth N ∈ Z≥1 to which the signature is truncated determines a parameter that may be
varied. Intuitively, the order N is a measure of the resolution at which the streams are viewed. For small N ,
only general features of the streams are considered, with more details of the streams considered asN increases.

The following theoretical properties of the conformance distance ||·||SigN (C) as the truncation level N ∈
Z≥1 varies are established in [Shao et al., 2020]. The first establishes that for a fixed stream x ∈ S(Rd), the
mapping N 7→

∣∣∣∣S(N)( x)
∣∣∣∣
SigN (C) is monotonically increasing (see Proposition 4.1 in [Shao et al., 2020]).

Hence the extent to which a stream x is considered an outlier compared to the original collection Ω
S
(
Rd
)

increases as the resolution N at which we examine the streams increases.
The second establishes that if x /∈ Ω

S
(
Rd
) then there exists an integer N∗ ∈ Z≥1 such that for every

integer N ∈ Z with N ≥ N∗ the conformance distance of S(N)( x) with respect to the corpus C is ∞ (see
Proposition 4.2 in [Shao et al., 2020]). Thus if a stream x is not in the original collection Ω

S
(
Rd
) of streams,

we are guaranteed that it will be classified as an outlier provided we examine the streams at a sufficiently high
resolution.

Four major benefits of the SigMahaKNN method proposed in [Shao et al., 2020] are:

• It is dimensionless in the sense that it is independent of the unit of measurement of the streams. Moreover
it is invariant to time-reparameterisation and concatenation of streams. These are direct consequence
of the invariance of the signature covered in Theorem 3.1 in this article. Particular theoretical results
establishing these property for the SigMahaKNN method may be found in Theorems 4.1, 4.2, and 4.3
in [Shao et al., 2020].

• It is a data-driven extension of Mahalanobis distance based models that continues to make sense even
when the sample covariance matrix is singular. In particular, it can deal with data exhibiting multi-
collinearity between channels.

• No distribution assumptions are required for the original collection of streams Ω
S
(
Rd
) ⊂ S

(
Rd
)
. The

method can be applied to any finite collection of streams in S
(
Rd
)
.

• Different types of anomalies that are missed by Mahalanobis distance based models are detected by the
SigMahaKNN model.

For the remainder of this section we turn our attention to the numerical performance of the SigMahaKNN
method as reported in section 5 of [Shao et al., 2020]. A detailed algorithm for the implementation of the
SigMahaKNN method is provided in algorithm 1 in [Shao et al., 2020]. In particular, it includes consideration
of numerical rank deficiency issues involved in the computation of the Moore-Penrose pseudo-inverse via SVD
factorisation that we have omitted.

For the two example problems we present here, the SigMahaKNN method is compared with isolation
forest [Liu et al., 2008] and the local outlier factor method [Breunig et al., 2000]. In order to use these
well-known anomaly detection methods on streamed data, the authors of [Shao et al., 2020] consider them
with either the moment features (mean and covariance of different channels of the stream), of the signature
features. This leads to four baselines: IF-M (Isolation Forest with Moment features), IF-S (Isolation Forest
with Signature features), LOF-M (Local Outlier Factor with Moment features), and LOF-S (Local Outlier
Factor with Signature features).

The SigMahaKNN method is evaluated using the PenDigitis-orig data set [Alpaydin and Alimoglu, 1996],
consisting of 10992 instances of handwritten digits captured from 44 subjects, in section 5 of [Shao et al.,
2020]. Each instance is represented as a two-dimensional stream, based on sampling of the pen position.

Given a digit k, a set of normal data INormal is defined to be the set of instances representing the digit
k. The subset of INormal labelled as ‘training’ by the annotators is taken for the collection Ω

S
(
R2
) of normal

streams. Further Y is taken to be the set of instances labelled as ‘testing’ by the annotators, which results
in #(Y) = 3498. Finally, IAnomaly is the subset of Y not representing digit k. On average, taken over the

consideration of all possible digits k, one has the cardinalities #
(
Ω

S
(
R2
)) = 749.4 and #

(
IAnomaly

)
=
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3148.2. Min-Max normalisation is applied to each individual stream since each digit class is invariant to
translation and scaling.

Truncated signatures of orders N ∈ {1, . . . , 5} are considered without any augmentation. The results,
based on aggregating conformance values across the set of possible digits, are summarised in Table 17. Once
the truncation level is at least 2 the SigMahaKNN out-performs all the baseline comparison models.

N = 1 N = 2 N = 3 N = 4 N = 5
SigMahaKNN 0.870 0.942 0.948 0.954 0.956

IF-M - - - - 0.618
IF-S 0.888 0.931 0.916 0.875 0.834

LOF-M - - - - 0.514
LOF-s 0.563 0.584 0.582 0.582 0.582

Table 17: Handwritten digits data: performance quantified using ROC AUC in response to signature order N .
Bootstrapped standard errors based on 104 samples are around 0.003. Table 1 in [Shao et al., 2020]

The second numerical example from [Shao et al., 2020] that we cover considers a sample of marine vessel
traffic data based on the the automatic identification system (AIS) which reports a ship’s geographical position
alongside other vessel information. This dataset, collected by the US Coast Guard in January 2017, contains a
total of 31 884 021 geographical positions recorded for 6282 distinct vessel identifiers. The authors of [Shao
et al., 2020] consider the stream of timestamped latitude/longitude position data associated with each vessel.

Vessel data with invalid identifiers of invalid length information were discarded. Streams are compressed
to only contain points that are at least 10m away from the previous position, and, to help ensure that streams
are faithful representations of ship movement, vessels whose starting and finishing points are within 5km are
discarded. To evaluate the effect of the stream length, the streams are disintegrated so that the length between
initial and final points in each sub-stream remains constant with D ∈ {4km, 8km, 16km, 32km}. Only sub-
streams whose maximum distance between successive points is less than 1km are subsequently retained. A
sub-stream is deemed normal if it belongs to a vessel of length at least 100m, and deemed anomalous if it
corresponds to a vessel of length no greater than 50m.

A finite collection of streams is obtained from 607 vessels whose sub-streams total between 10111 (D =
32km) and 104369 (D = 4km). A subset of normal instances used for testing is obtained from 607 vessels
whose sub-streams total between 11254 (D = 32km) and 114071 (D = 4km). Finally, a subset of anomalous
instances is obtained from 997 vessels whose sub-streams total between 8890 (D = 32km) and 123237
(D = 4km).

Imbalance in the number of sub-streams is accounted for by using, for each of the aforementioned three
subsets, a weighted sample of 5000 instances. After computing the sub-streams and transforming them as out-
lined above, Min-Max normalisation is applied. The difference between successive timestamps is augmented
into the streams as a new channel to account for velocity (cf. Time Augmentation in Subsection 2.5). Sig-
natures truncated to depth N = 3 are considered. For baseline comparison models, each sub-stream is also
summarised by estimating its component-wise mean and covariance, retaining the upper triangular part of the
covariance matrix. The resulting set of features has dimensionality 1

2 (n
2+3n), and these features are provided

as input to an isolation forest [Liu et al., 2008]. The isolation forest is trained using 100 trees and for each tree
in the ensemble using 256 samples represented by a single random feature.

Table 18 displays results for the proposed signature approach in comparison to the baseline, for combi-
nations of stream transformations and values of the sub-stream length D. Signature conformance yields higher
ROC-AUC scores than the baseline models for the majority of the parameter combinations. The maximum
ROC-AUC score (highlighted in bold in Table 18) is achieved by the signature conformance for D = 32km
using a combination of lead-lag, time differences and invisibility reset transformations. The score of 0.891 is a
10 percentage points gain compared to the best-performing baselines parameter combination for D = 32km.
This best-performing baseline parameter combination for D = 32km is achieved by the IF-M model using a
combination of time differences and invisibility reset transformations, achieving a ROC-AUC score of 0.828.
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Model Lead-Lag Time-Diff Time-inv D = 4km D = 8km D = 16km D = 32km
SigMahaKNN No No No 0.723 0.706 0.705 0.740

IF-M No No No 0.714 0.712 0.727 0.727
IF-S No No No 0.627 0.623 0.645 0.660

LOF-M No No No 0.543 0.542 0.522 0.513
LOF-S No No No 0.484 0.500 0.491 0.492

SigMahaKNN No No Yes 0.776 0.789 0.785 0.805
IF-M No No Yes 0.781 0.785 0.776 0.790
IF-S No No Yes 0.686 0.701 0.715 0.718

LOF-M No No Yes 0.555 0.585 0.564 0.535
LOF-S No No Yes 0.565 0.572 0.562 0.520

SigMahaKNN No Yes No 0.810 0.813 0.818 0.848
IF-M No Yes No 0.767 0.772 0.786 0.804
IF-S No Yes No 0.731 0.714 0.737 0.771

LOF-M No Yes No 0.547 0.543 0.526 0.520
LOF-S No Yes No 0.511 0.505 0.493 0.494

SigMahaKNN No Yes Yes 0.839 0.860 0.863 0.879
IF-M No Yes Yes 0.830 0.823 0.831 0.828
IF-S No Yes Yes 0.777 0.784 0.789 0.808

LOF-M No Yes Yes 0.559 0.589 0.572 0.545
LOF-S No Yes Yes 0.565 0.572 0.561 0.520

SigMahaKNN Yes No No 0.811 0.835 0.824 0.837
IF-M Yes No No 0.696 0.704 0.711 0.724
IF-S Yes No No 0.617 0.596 0.634 0.668

LOF-M Yes No No 0.543 0.541 0.522 0.513
LOF-S Yes No No 0.484 0.500 0.491 0.493

SigMahaKNN Yes No Yes 0.812 0.835 0.833 0.855
IF-M Yes No Yes 0.758 0.759 0.767 0.773
IF-S Yes No Yes 0.692 0.701 0.691 0.713

LOF-M Yes No Yes 0.566 0.556 0.542 0.533
LOF-S Yes No Yes 0.564 0.569 0.558 0.518

SigMahaKNN Yes Yes No 0.845 0.861 0.862 0.877
IF-M Yes Yes No 0.747 0.763 0.780 0.785
IF-S Yes Yes No 0.725 0.692 0.716 0.757

LOF-M Yes Yes No 0.547 0.543 0.526 0.520
LOF-S Yes Yes No 0.530 0.533 0.553 0.600

SigMahaKNN Yes Yes Yes 0.848 0.863 0.870 0.891
IF-M Yes Yes Yes 0.811 0.813 0.809 0.823
IF-S Yes Yes Yes 0.779 0.782 0.801 0.823

LOF-M Yes Yes Yes 0.572 0.563 0.554 0.544
LOF-S Yes Yes Yes 0.574 0.588 0.589 0.584

Table 18: SigMahaKNN, IF-M, IF-S, LOF-M, and LOF-S on Marine vessel traffic data: performance quantified
using ROC AUC. Best across all transformations and models are in bold. Combination of Tables 2, 3, 4, 5, and
6 in [Shao et al., 2020]

Subsequent to the appearance of [Shao et al., 2020], the outlier detection framework of the SigMahaKNN
method is considered for anomaly detection on radio astronomy data in [Arrubarrena et al., 2024]. In par-
ticular, the authors of [Arrubarrena et al., 2024] develop the SigNova method, inspired by the SigMahaKNN
framework, that can detect much fainter radio frequency interference (RFI) than the two main frameworks
SSINS [Wilensky et al., 2019] and AOFlagger [Offringa et al., 2012, Offringa et al., 2015] are capable of
detecting. The SigNova method implements all the steps of the SigMahaKNN framework with an additional
application of the pysegments segmentation algorithm [Arrubarrena et al., 2024].

In [Cass et al., 2024] the authors propose a novel framework for Mahalanobis-type anomaly detection
on any Banach space (including, in particular, any Hilbert space) that is based upon the generalised notion of
variance norm introduced in [Shao et al., 2020] and ideas from Cameron-Martin spaces (see e.g. [Lifshits and
Lifshits, 2012, Bogachev, 1998]). In the Hilbert space setting, it is established that the variance norm depends
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solely on the given inner product, and hence that the kernelised Mahalanobis distance can be recovered by
working on Reproducing Kernel Hilbert Spaces (RKHS) [Cass et al., 2024]. This underpins the authors in-
troduction of the Kernelised Nearest-Neighbour Mahalanobis distance for semi-supervised anomaly detection
in [Cass et al., 2024]. Both theoretical justifications and empirical validations of this approach can be found
in [Cass et al., 2024].

The paper [Akyildirim et al., 2022] considers the use of path signature techniques for anomaly detection
with the aim of detecting market manipulation attempts from financial data. There are two main reasons we
delay discussing this approach until Section 15. The first is that the authors of [Akyildirim et al., 2022] make
use of “off-the-shelf” anomaly detection algorithms without alteration; this is quite distinct in spirit from the
approach in [Shao et al., 2020] of introducing a novel measure of similarity related to a reformulation of what
being an anomaly should mean. The second is that a major novelty of the approach proposed in [Akyildirim
et al., 2022] is the use of randomised signatures, which are noteworthy enough to warrant their own dedicated
section.

15. Randomised Signature
In this section we discuss randomised signatures as presented in, for example, [Akyildirim et al., 2022].
Loosely speaking, randomised signatures exploit the notion of reservoir computing for modelling input-output
systems to provide more concrete realisations (or, algebraically speaking, representations) of the abstract Ten-
sor algebra (cf. Subsection 2.7). The close link between path signatures and CDEs discussed in Section 4 is
central to this approach. We begin our presentation with a brief introduction to reservoir computing.

Fix non-negative integers n, k, e ∈ Z≥1. Reservoir Computers (RCs) are state-space transformations
given by recurrent neural networks (RNNs) determined by two maps; namely, a reservoir (or state) map F :
Rn × Re → Rn, and a readout map h : Rn → Rk. The integer n ∈ Z≥1 is the number of virtual neurons
of the system. RCs transform (or filter) a discrete-time input z = (zm)m∈Z ⊂ Re into an output signal
y = (ym)m∈Z ⊂ Rk using the state-space transformation given, for t ∈ Z, by

yt := h
(
xt
)
∈ Rk for xt := F

(
xt−1, zt

)
∈ Rn. (15.1)

The RC satisfies the echo state property (ESP) if any input signal (zm)m∈Z ⊂ Re results in a unique output
under the transformation detailed in (15.1). Typically, the reservoir map F does not depend on the specific
dynamics, and instead provides a collection (or reservoir) of features. The readout map h is the object that is
actually trained to use the features provided by the reservoir map F to match the observed collection of outputs
sufficiently well.

The RC approach enables one to translate infinite dimensional problems regarding filters to analogous
questions related to the reservoir and readout maps that generate the filter and are defined on finite dimensional
spaces. An in-depth discussion of reservoir computing covering numerous important theoretical results can be
found in [Grigoryeva and Ortega, 2018], [Cuchiero et al., 2021a], and the references there in. A particularly
noteworthy result is the universality property established for a particular class of RCs in [Grigoryeva and
Ortega, 2018]. In [Grigoryeva and Ortega, 2018] the authors establish that the class of RCs for which the
reservoir map F : Rn × Re → Rn is given by F (x, y) := σ( A x + By + ξ), for real matrices A ∈ Rn×n,
B ∈ Rn×e, a vector ξ ∈ Rn, and a sigmoid function σ : R → R applied component wise, and the readout map
h : Rn → Rk is given by h(x) := Wx, for a real matrix W ∈ Rk×n, are universal uniform approximants
for a large class of discrete-time filters; see Theorem 4.1 in [Grigoryeva and Ortega, 2018] for the full detailed
statement.

Reservoir computing offers an approach to the task of describing the solution trajectories of CDEs without
having access to the vector fields. To be more precise, fix non-negative integers d, l ∈ Z≥1, fix T > 0, and (for
simplicity) suppose that X : [0, T ] → Rd is a continuous path of bounded variation, i.e. X ∈ V1([0, T ];Rd).
Further suppose that f : Rl → L

(
Rd,Rl

)
is continuous. Then, for a given x0 ∈ Rl, we may consider trying

to find a path z : [0, T ] → Rl solving the following CDE driven by X:

z0 = x0 and dzt = f(zt)dXt (15.2)
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for every t ∈ (0, T ]. In Section 4 we observed that if the CDE (15.2) is linear in the sense that f(zt)dXt =
B(dXt)zt for a bounded linear map B : Rd → L

(
Rl,Rl

)
, then the solution to (15.2) is given by a linear

combination of the terms of the signature of the path X . To be more precise, in this case the solution to (15.2)
is given by (cf. (4.3))

zt =

( ∞∑
i=0

B⊗i
(
Si
0,t(X)

))
x0 (15.3)

Evidently, for linear CDEs, one approach is to take the (truncated) signature as the reservoir map, and subse-
quently take the readout map to be a trainable linear map. This strategy is completely analogous to the generic
strategy followed throughout this survey article.

However, as noted in [Cuchiero et al., 2021b], the difficulty in calculating the precise values of the reser-
voir given by the signature of a control path X ∈ V1([0, T ];Rd) is in sharp contrast to the usual setting for
reservoir computing in which reservoirs are easy to evaluate. In [Cuchiero et al., 2021b] the authors overcome
this issue by introducing the randomised signature. The information of the signature is compressed via a ran-
dom projection to a lower dimensional Euclidean space. A key aspect is that the image of this projection can
be well-approximated by a dynamical system on the lower dimensional Euclidean space with random charac-
teristics. In order to provide a more detailed explanation of the randomised signature we additionally make use
of the presentation provided in [Akyildirim et al., 2022].

Coarsely, the idea of randomised signatures is to provide a more concrete realisation of the tensor algebra
T
((
Rd+1

))
via mapping the canonical basis e0, . . . , ed of Rd+1 to a collection of informative vector fields

Rk → Rk for some moderately sized integer k ∈ Z≥1. The switch from d to d + 1 reflects that path X is
replaced by its time-augmented variant where the running time is recorded as a new additional zeroth compo-
nent. The choice of the form of vector fields is partly motivated by both the aim to model a random projection
of the signature, and the universality results established in [Grigoryeva and Ortega, 2018] and [Cuchiero et al.,
2021a].

To specify the class of vector fields Rk → Rk considered, fix a choice of a bounded real analytic activation
function σ : R → R, and, for each j ∈ {0, . . . , d}, a choice of k × k matrix A j ∈ Rk×k and vector bj ∈ Rk.
Then one may consider the map from Rd+1 to the set of vector fields on Rk given by mapping, for each
j ∈ {0, . . . , d}, the basis element ej to the vector field fj : Rk → Rk defined, for x ∈ Rk, by

fj(x) := σ
(

A jx+ bj
)
. (15.4)

In (15.4), the activation function σ is applied component-wise. Following the notation used in Definition 2.12
in [Akyildirim et al., 2022], the solution RS : [0, T ] → Rk to the linear CDE

RS0 ∈ Rk with dRSt =

d∑
j=0

fj(RSt)dX
j
t =

d∑
j=0

σ
(

A j RSt +bj
)
dXj

t (15.5)

for every t ∈ (0, T ] is called randomised signature.
Theoretical results in both [Cuchiero et al., 2021b] and [Akyildirim et al., 2022] establish that, under

certain assumptions, randomised signatures are universal approximants in the space of continuous functions.
The approach in [Cuchiero et al., 2021b] is inspired by reservoir computing techniques, culminating in Theo-
rem 3.3 which makes use of the Johnson–Lindenstrauss lemma to establish that randomised signatures are as
expressive as the signature itself in a quantified sense. In a similar spirit, Theorem 2.13 in [Akyildirim et al.,
2022] gives a more direct argument to verify that randomised signatures inherit the universality of the full sig-
nature provided the representation from the free algebra generated by e0, . . . , ed to the algebra of differential
operators on Rk defined in (15.4) is injective. It is additionally required in Theorem 2.13 in [Akyildirim et al.,
2022] that b0, . . . , bd, A 0, . . . , A d are independent samples of a probability law absolutely continuous with
respect to the Lebesgue measure.

We end this section with an illustration of the use of randomised signature for anomaly detection presented
in [Akyildirim et al., 2022]. In particular, the task of detecting market fraud by identifying so-called Pump-
and-Dump (PD) attempts within various cryptocurrencies is considered in [Akyildirim et al., 2022]. The lack
of regulation of cryptocurrency brokers has resulted in them being the target of numerous market manipulation
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attempts. A PD scheme is a particular type of market manipulation strategy that is highly risky for participants
[Akyildirim et al., 2022]. Typically, a PD scheme involves the following general steps happening over the
course of 2–3 minutes.

• Pre-Pump: Organisers discretely advertise to their members which cryptocurrency to buy, which cryp-
tocurrency to use to make the purchases, and the exact time to do so.

• Pump: Members are urged to buy the target coin and hold it to cause a short-term price inflation.

• Dump: After the price increases dramatically, some members consolidate their gains by selling. This
leads to a cascade as more and more participants choose to sell, often leading to the price returning close
to its pre-pump level.

A more thorough discussion of PD schemes may be found in subsections 3.3–3.5 in [Akyildirim et al., 2022].
Further details may also be found in [Xu and Livshits, 2019] or [La Morgia et al., 2023], for example.

The authors of [Akyildirim et al., 2022] consider data obtained from the database created by [La Morgia
et al., 2023]. The database consists of a list of PD attempts. Every entry of the list contains

(1) The acronym for the name of the coin, e.g. BTC for Bitcoin, called symbol of the coin;

(2) The name of the Telegram/Discord group where this information was retrieved;

(3) The date (day) of the PD attempt;

(4) The time (hour and minute) of the PD attempt;

(5) The exchange on which the PD attempt took place.

Using this information and the Python-library ccxt, the authors of [Akyildirim et al., 2022] download trades,
that is all orders that were placed and also realised by selling or buying cryptocurrency in a neighbourhood of
the PD attempt. Every trade is characterised by the following information:

(1) Trading pair of symbol and currency, e.g. BTC/USD means Bitcoin is traded using US Dollars;

(2) Timestamp, an integer, denoting the UNIX time in milliseconds;

(3) Datetime, i.e. the ISO8601 datetime with milliseconds;

(4) Side, string, either “buy” or “sell” to distinguish the operation kind: for the trading pair BTC/USD “buy”
means buying BTC using USD, while “sell” means receiving USD for BTC;

(5) Price, float, indicating the price at which the pair was traded;

(6) Amount, float, denoting the quantity (in base currency, i.e. USD in the example BTC/USD) which was
traded.

Data was retrieved for windows of length 3, 6, and 14 days centred on the moment of the PD attempt. The
underlying idea is that the activity corresponding to the PD attempt will be anomalous compared to the normal
activity contained within the window.

The raw data was preprocessed as follows. Whenever trades have the same timestamp, side, and price then
the trade volumes are summed accumulated since one can interpret these trades as one larger trade without any
loss of information. The variable side is translated into a numerical format by encoding all “buy” signals as
0.5 and all “sell” signals as −0.5. Volume is calculated as the product of price and amount; prices are used to
compute the simple returns. Thus the final time series considered consists of the channels trade time, returns,
volume, and trade side, with each channel normalised to live within the interval [0, 1].

Let Dc ⊂ Rn+4 denote the vector of time series composed of trades’ timestamp, side, price, and volume
for a coin c. Here n denotes the number of trades during the pre-specified time interval around the PD attempt.
Split Dc as into ⌈n/o⌉ subsets of w trades, where o denotes the offset of how many trades to move forward in
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time. To be more precise, identify the trade-window specified by w trades and then move on shifting among
the listed trades. Denote this splitting by

Dc =

⌈n/o⌉⋃
i=1

Di
c. (15.6)

Transform each subset Di
c into a feature set by either calculating the exact signature or the randomised signa-

ture. LetRi
c and R̃i

c denote the exact and randomised signatures respectively. The final feature set is then given
by

R :=
⋃
c

⌈n/o⌉⋃
i=1

Ri
c and R̃ :=

⋃
c

⌈n/o⌉⋃
i=1

R̃i
c. (15.7)

The offset o and the window size w can be viewed as hyper-parameters which can be optimised. The choice
of w = 100 and o = 5 was found to give a good balance between run time and precision in [Akyildirim et al.,
2022].

The remaining hyper-parameters required to compute the randomised signatures were chosen as follows.
The function σ is taken as tanh, the reservoir dimension k was chosen as 50, the mean and the variance of
the matrices A were 0.05 and 0.1 respectively, and the mean and the variance of the vectors b were 0 and 1
respectively (cf. Table 1 in [Akyildirim et al., 2022]).

Once the feature sets R and R̃ are computed, the authors of [Akyildirim et al., 2022] use the Sklearn
Python Package implementations of the robust covariance and isolation forest anomaly detection algorithms.
In contrast to the signature-based approach to anomaly detection proposed in [Shao et al., 2020] (which is
covered in Section 14 of this article), these “off-the-shelf” anomaly detection algorithms are used without
alteration in [Akyildirim et al., 2022]. Consequently, any drawbacks of these anomaly detection algorithms
are inherited. The method using the robust covariance anomaly detection algorithm requires the number of
samples to exceed the square of the number of features, which leads to a restriction on the truncation level
that may be considered. The method using the isolation forest anomaly detection algorithm requires the use of
sub-sampling techniques due to the improved performance of this algorithm on smaller data sets.

More detailed overviews of the robust covariance and isolation forest anomaly detection algorithms are
provided in subsections 3.8.1 and 3.8.2 of [Akyildirim et al., 2022] respectively. The reader seeking extensive
coverage is directed to [EStimator, 1999] for the robust covariance anomaly detection algorithm and to [Liu
et al., 2008] for the isolation forest anomaly detection algorithm.

The predictions of the resulting methods are compared with manually labelled PD attempts. The un-
supervised anomaly detection method proposed in [Kamps and Kleinberg, 2018] is used as a benchmark.
Performance is additionally compared against the method proposed in [La Morgia et al., 2023] that is based
upon supervised learning and requires labelled training data. The signature and randomised signature methods
are themselves unsupervised techniques; no labelled training data is required. The precision, recall, and F1
scores are recorded for comparison (the F1 score is the harmonic mean of the precision and the recall). The
results are summarised in Table 19 (cf. Table 3 in [Akyildirim et al., 2022]).

Excluding the Exact Truncated Signature (Robust Covariance) method, all the signature and randomised
signature based methods proposed in [Akyildirim et al., 2022] out-perform the benchmark unsupervised model
from [Kamps and Kleinberg, 2018] for all time windows. Moreover, the best classifier from [Akyildirim et al.,
2022], which is an unsupervised method, comes relatively close to matching the performance of the classifier
in [La Morgia et al., 2023] which is a supervised method. Finally, the similar levels of performance between
the exact truncated signature methods and the randomised signature methods provides an empirical illustration
of the theoretical property that randomised signatures contain the same information as the signature itself.

86

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/


REFERENCES Terry Lyons & Andrew D. McLeod

Classifier Days Precision (%) Recall (%) F1 (%)
Kamps et al. 3 65 86 74

6 48 86 62
14 29 81 43

La Morgia et al. 3 98 91 95
6 - - -
14 - - -

Randomised Signature (Isolation Forest) 3 93 83 88
6 82 83 82
14 75 75 75

Randomised Signature (Robust Covariance) 3 80 94 86
6 80 84 82
14 75 75 75

Exact Truncated Signature (Isolation Forest) 3 83 92 87
6 81 82 81
14 71 74 72

Exact Truncated Signature (Robust Covariance) 3 61 61 60
6 61 47 54
14 58 32 44

Table 19: Kamps et al. denotes the method proposed in [Kamps and Kleinberg, 2018]. La Morgia et al.
denotes the method proposed in [La Morgia et al., 2023]; the results for this method are reported directly
from [La Morgia et al., 2023] which does not consider windows of 6 or 14 days. Randomised Signature
(Isolation Forest) denotes the method proposed in [Akyildirim et al., 2022] of using randomised signatures as
the features for an isolation forest. Randomised Signature (Robust Covariance) denotes the method proposed
in [Akyildirim et al., 2022] of using randomised signatures as the features for the robust covariance algorithm.
Exact Truncated Signature (Isolation Forest) denotes the method proposed in [Akyildirim et al., 2022] of using
truncated signatures as the features for an isolation forest. Exact Truncated Signature (Robust Covariance)
denotes the method proposed in [Akyildirim et al., 2022] of using truncated signatures as the features for the
robust covariance algorithm. Table 3 in [Akyildirim et al., 2022].
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