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ABSTRACT

Estimation of causal effects is critical to a range of scientific disciplines. Existing methods for this
task either require interventional data, knowledge about the ground truth causal graph, or rely on
assumptions such as unconfoundedness, restricting their applicability in real-world settings. In the
domain of tabular machine learning, Prior-data fitted networks (PFNs) have achieved state-of-the-
art predictive performance, having been pre-trained on synthetic data to solve tabular prediction
problems via in-context learning. To assess whether this can be transferred to the harder problem
of causal effect estimation, we pre-train PFNs on synthetic data drawn from a wide variety of
causal structures, including interventions, to predict interventional outcomes given observational data.
Through extensive experiments on synthetic case studies, we show that our approach allows for the
accurate estimation of causal effects without knowledge of the underlying causal graph. We also
perform ablation studies that elucidate Do-PFN’s scalability and robustness across datasets with a
variety of causal characteristics.

1 Introduction

The estimation of causal effects is fundamental to scientific disciplines such as medicine, economics, and the social
sciences (Pearl, 2009; Varian, 2016; Imbens, 2024; Wu et al., 2024). Questions such as “Does a new drug reduce the
risk of cancer?” and “What is the impact of minimum wage on employment?” can only be answered by taking the
causal nature of the problem into account.

The widely accepted gold standard for assessing causal effects are randomized controlled trials (RCTs). While RCTs
allow for the direct estimation of causal effects, they can sometimes be unethical or expensive, and, in many cases,
simply impossible. In contrast to experimental data from RCTs, observational data is often more accessible, collected
without interfering in the independent and identically distributed (i.i.d) data-generating process. Estimating causal
effects from observational data alone can be challenging or even impossible without strict assumptions (Spirtes et al.,
1993).

Various methods have been proposed to address the problem of causal effect estimation, typically relying on the
assumption of unconfoundedness (Rosenbaum and Rubin, 1983). This assumption states that, conditional on a set
of observed covariates, treatment assignment is independent of the potential outcomes. While this condition enables
identification of causal effects from observational data, it can be difficult to verify or justify in practice, as it requires
that relevant confounders are observed and properly accounted for (Hernán and Robins, 2010; Imbens and Rubin, 2015).
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Figure 1: Do-PFN overview: Do-PFN performs in-context learning (ICL) for causal effect estimation, predicting
conditional interventional distributions (CIDs) based on observational data alone. In pre-training, a large number of
structural causal models (SCMs) is sampled. For each SCM, we sample an entire dataset of Mob observational data
points Dob = {(tobj ,xobj , yobj )}Mob

j=1 . We also sample M in interventional data points Din = {(tink ,x
pt
k , y

in
k )}Min

k=1 . To
simulate inference, we input (tin, xpt) along with the entire observational dataset Dob, which can have various sizes and
dimensionalities. Subsequently, the transformer makes predictions ŷ, and we calculate the pre-training loss L(ŷ, yin)
between the predictions ŷ and the ground truth interventional outcomes yin. Pre-training repeats this procedure across
millions of sampled SCMs to meta-learn how to perform causal inference in context. In real-world applications,
Do-PFN leverages the many simulated interventions it has seen during pre-training to predict CIDs, relying only on
observational data and requiring no information about the causal graph.

Under the unconfoundedness assumption, a variety of estimation techniques have been developed, including causal
forests (Wager and Athey, 2018), or “doubly robust” methods that combine propensity score modeling and outcome
regression (Chernozhukov et al., 2018).

Many applications of causality involve tabular data, and prior-data fitted networks (PFNs) (Müller et al., 2022) have
recently transformed the landscape of tabular machine learning. TabPFN (Hollmann et al., 2023, 2025), an application
of PFNs to tabular classification tasks, was initially met with skepticism, arguably because of its radically different
working principle compared to other state-of-the-art tabular machine learning methods. In a nutshell, TabPFN is a model
that takes as input an entire dataset of labeled training data points {(xi, yi)}Mi=1 and unlabeled test data points xnew
and “completes” it with an in-context prediction of the corresponding ynew, akin to a large language model answering a
question by producing a likely text continuation. The approach can handle datasets of various sizes and dimensionality.

TabPFN is trained to execute this completion task across millions of synthetic datasets, for each dataset computing
the likelihood of the true ynew under the PFN’s predictive distribution and performing one step of stochastic gradient
descent on this likelihood. The context refers to the chunk of data that is fed into the model at a time. In a language
model, these are thousands of words; in the case of TabPFN it is a whole training set plus a query data point; and in our
case also an added intervention. In-context learning refers to the ability to output a desired quantity based on what is
provided in the context; the term learning indicates that this solves a task that would classically often require learning
(e.g., estimating a regression function and using it to predict a target). For us, the desired quantity is the effect of an
intervention. Training such a model then consists of meta-learning (across millions of meta-training datasets) the ability
to provide the desired answer given a context. The term meta indicates that it is an outer loop around a procedure that
itself is already a form of learning or estimation.

In spite of being pre-trained only on synthetic data, TabPFN has produced impressive results on real-world machine
learning benchmarks (McElfresh et al., 2023; Xu et al., 2025; Hollmann et al., 2025). Given these remarkable findings,
it is timely to assess whether a similar meta-learning approach could help us tackle harder problems that are causal
rather than merely predictive. Due to the delicate nature of causal inference, the sensitivity of the tasks associated
with it, and the scarcity of real-world causal effect estimation data with ground truth, we will do so by systematically
exploring synthetic data with known ground truth and two real-world datasets with widely agreed-upon causal graphs.
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Recent developments have shown that certain limitations in inferring causal structures and causal effects can be
addressed by using multi-domain data in the form of mixtures of i.i.d. observational data (Guo et al., 2023, 2024).
Interestingly, PFNs also leverage pre-training on a mixture of i.i.d. data to meta-learn how to solve predictive tasks at
test time. We thus hypothesize that causal tasks could also be addressed through meta-learning on multi-domain data.
As a first step, our goal is to extend PFNs to the problem of estimating conditional interventional distributions (CIDs).

In contrast to TabPFN, we not only simulate observational tabular data in order to predict a target feature. Rather, we
additionally simulate causal interventions, teaching our model, which we call Do-PFN, to meta-learn how to perform
causal inference.

Our contributions

1. We propose Do-PFN, a pre-trained foundation model that can predict interventional outcomes from observa-
tional data, and prove that it provides an optimal approximation of the conditional interventional distribution
(CID) with respect to the chosen prior over data-generating models.

2. We evaluate the performance of Do-PFN on six case studies across more than 1,000 synthetic datasets. For
both predicting CID and CATE, Do-PFN (1) achieves competitive performance with baselines that have access
to the true causal graph (typically not available in practice) and (2) statistically significantly outperforms
standard regression models in predicting interventional outcomes as well as common methods for estimating
causal effects. Our ablations show that Do-PFN works well on small datasets, is robust to varying base rates of
the average treatment effect, and performs consistently on large graph structures.3

2 Background and related work

Structural causal models Structural causal models (SCMs; Pearl, 2009; Peters et al., 2017) represent the structure of
a data-generating process. The first component of an SCM ψ is a directed acyclic graph (DAG) Gψ , which we assume
to have K nodes, each representing a variable zk. Furthermore, the SCM specifies the mechanisms to generate the
variables from their (causal) parents via structural equations zk = fk(zPA(k), ϵk), where fk is a function, zPA(k) denotes
the parents of variable k in G and ϵk is a random noise variable. We use ϵ := (ϵ1, ϵ2, . . . , ϵK) to denote the vector
comprising the noise terms. In our simulations these will be taken as jointly independent, but our methodolody does not
require this.

Interventions and causal effects In the context of SCMs, performing an intervention do(t) for a variable T ∈
{z1, z2, . . . , zK} that is part of the SCM ψ corresponds to removing all incoming edges into the node representing t
and fixing the value of the variable T to the value t. We assume the “treatment” T to be binary such that t ∈ {0, 1}.
The causal effect of this intervention on an outcome y is captured by p(y|do(t), ψ). A central object of interest for this
paper is the conditional interventional distribution (CID; Shpitser and Pearl, 2006) that additionally conditions on a
vector x comprising several variables in the SCM,

p(y|do(t),x). (1)

A CID answers a question like “What is the distribution of outcomes given that (i) a patient has features x and (ii)
an intervention do(t) is performed?” CIDs enable the estimation of conditional average treatment effects (CATEs):
τ(x) := E [y|do(1),x]− E [y|do(0),x].

Estimating causal effects Various methods allow for the direct estimation of causal effects from experimental data
(Shalit et al., 2017; Kennedy, 2023; Nie and Wager, 2021). However, RCT data is often difficult to access. It might be
easier, or even the only option, to access an observational dataset Dob = {(yobj , tobj , xobj )}Mob

j=1 of passively collected
samples (yobj , t

ob
j , x

ob
j ) ∼ p(y, t,x).

When approaching causal effect estimation from the framework of do-calculus (Pearl, 2009), practitioners first need to
construct an SCM ψ that they believe (or have inferred) to represent the ground-truth data-generating process. The rules
of do-calculus subsequently allow to determine whether and how the desired causal effect can be estimated from the
data. Back-door and front-door adjustment are popular methods to allow for estimation of the desired causal effects.

The Neyman-Rubin framework (Imbens and Rubin, 2015) defines causal effects as contrasts between potential
outcomes y1 ∼ p(y|do(1)) and y0 ∼ p(y|do(0)), and relies on a set of key assumptions, critically ignorability (or
unconfoundedness), which requires that treatment assignment is independent of potential outcomes given a set of

3We provide our pre-trained models, pre-training data generation code, and case study datasets at https://github.com/
jr2021/Do-PFN.
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Algorithm 1: Prior-fitting with SGD. Do-PFN is pre-trained on pairs of synthetic observational and interventional
datasets; the model is trained to predict interventional outcomes yin given a covariate-vector xpt, the value of an
intervention tin and an observational dataset Dob.

1 for i = 1, 2, . . . , N do
2 Draw ψi ∼ p(ψ); // Draw an SCM
3 Initialize Dobi ← ∅;
4 Draw Mob ∼ Uniform({Mmin,Mmin + 1, . . . ,Mmax}); // Number of observational data points
5 for j = 1, . . . ,Mob do
6 Sample noise ϵj ∼ p(ϵ);
7 Draw yobj , t

ob
j ,x

ob
j ∼ p(yob, tob,xob|ψi, ϵj); // Draw observational data

8 Dobi ← Dobi ∪
{
(yobj , t

ob
j ,x

ob
j )

}
;

9 end
10 Initialize Dini ← ∅;
11 Set Min =Mmax −Mob;
12 for k = 1, 2, . . . ,Min do
13 Sample noise ϵk ∼ p(ϵ);
14 Draw xptk ∼ p(xpt|ψi, ϵk); // Pre-treatment values of covariates
15 Draw tink ∼ p(tin) ; // Draw value for intervention
16 Draw yink ∼ p(yin|do(tink ), ψi, ϵk); // Sample interventional outcomes
17 Dini ← Dini ∪

{
(yink , t

in
k ,x

pt
k )

}
;

18 end
19 Compute Li(θ) =

∑Min

k=1 − log qθ(y
in
k |do(tink ),xptk ,Dobi ); // Loss computation

20 θ ← θ − α∇Li(θ); // Gradient descent
21 end

observed covariates. Machine-learning based methods conceptualized in this framework include causal trees (Athey
and Imbens, 2016), causal forests (Wager and Athey, 2018), as well as T-, S- and X-learners (Künzel et al., 2019).

Prior-data fitted networks and amortized Bayesian inference In our context, we define amortized (Bayesian)
inference as learning the mapping D 7→ p(y|x,D) from a dataset to a posterior; that is, the amortization occurs at the
dataset level. The model that parameterizes this mapping can be obtained by simulating a large number of samples of
the form (Di, yi,xi), followed by training the model to predict yi while conditioning on xi and Di. Neural processes
(Garnelo et al., 2018a,b; Nguyen and Grover, 2022) and various techniques from the field of simulation-based inference
(Wildberger et al., 2023; Gloeckler et al., 2024; Vasist et al., 2023) perform amortized inference in the aforementioned
manner. Recently, PFNs have been proposed as an amortized inference framework, emphasizing the role of large-scale
pre-training and realistic simulators of synthetic data, referred to as the prior (Müller et al., 2022). The PFN framework
has been successfully applied to diverse problems, such as time-series prediction (Dooley et al., 2023; Hoo et al., 2024),
Bayesian optimization (Müller et al., 2023; Rakotoarison et al., 2024), and causal fairness (Robertson et al., 2024).

Amortized causal inference Amortized inference beyond observational distributions was first explored for causal
discovery (Ke et al., 2022; Lorch et al., 2022; Dhir et al., 2025). Sauter et al. (2025) consider the problem of meta-
learning causal inference, proposing to learn the shift in distributions of all nodes in the SCM when performing an
intervention. However, this approach fails to outperform a conditioning-based baseline even in a two-variable setting.
Nilforoshan et al. (2023) consider the problem of zero-shot inference for CATEs using a meta-learning approach to
facilitate generalization to unseen treatments. Concurrent to our work, Bynum et al. (2025) propose to use amortized
inference to learn various causal effects; however, they only focus on low-dimensional SCMs with up to three nodes
and do not target the CID, but only point estimates, thus ignoring uncertainty.

3 Methodology: causal inference with PFNs

Modeling assumptions We now formalize how to do causal inference with PFNs, more precisely how to estimate
conditional interventional distributions (CIDs) defined as p(y|do(t),x) from observational data Dob. A central com-
ponent of our approach to causal effect estimation is to posit a prior p(ψ) over SCMs. We further require that every
sampled SCM ψ ∼ p(ψ) allows to simulate observational data from p(yob, tob,xob|ψ) by sampling noise ϵ ∼ p(ϵ)
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that is propagated through the SCMs ψ. We furthermore assume a prior p(tin) over possible values for the treatment
variable when performing an intervention do(tin). This prior is only required to sample values for the intervention and
does not affect how we model the CID (Equation 1) provided it has sufficient support. Samples from the distribution
p(yin,xpt|ψ, do(tin)) over outcomes and covariates given this intervention then result from forward-propagating
through the intervened-upon SCM. We sample the values of the covariates xpt prior to performing the intervention
do(tin), such that xpt contains only pre-treatment values (also of variables that are descendants of the treatment). We
do this to train our model to learn the conditional interventional distribution given only pre-treatment values which is a
more realistic setup in practice. Please refer to Algorithm 1 and Appendix B for more details on the data-generating
process. The assumptions above imply the following form of the CID:

p(yin|do(tin),xpt) =
∫
p(yin|do(tin),xpt, ψ) p(ψ|xpt)dψ. (2)

Note that in our framework p(ψ|xpt) ̸= p(ψ) since knowing the feature vector xpt provides information on the SCM
that generated it. Assuming a prior p(ψ) over SCMs, and thus also over causal graphs Gψ , can be seen as an extension
of the classical do-calculus approach where typically a fixed causal graph G̃ψ, or even a fixed SCM ψ̃, is used as the
basis for further inference. Compared to the assumptions typically made in the potential outcomes framework, our
method also includes scenarios without the unconfoundedness assumption.

Approximating the conditional interventional distribution Ultimately, we are interested in obtaining a model
qθ(y

in|do(tin),xpt,Dob)4 that is as close as possible to the CID p(yin|do(tin),xpt, ψ) for all relevant treatment values
t, SCMs ψ, and covariate-vectors xpt, while only taking observational data Dob into account. The core idea of PFNs is
to achieve this by prior fitting, i.e., minimizing the negative log-likelihood − log qθ(y

in|do(tin),xpt,Dob) on data from
the synthetic data-generating process (Müller et al., 2022) via stochastic gradient descent (lines 19 and 20 in Algorithm
1). The following proposition shows that prior-fitting according to Algorithm 1 achieves the goal of yielding an optimal
approximation of the CID from observational data:

Proposition 1. Performing stochastic gradient descent according to Algorithm 1 corresponds to minimizing the expected
forward Kullback-Leibler divergence between the conditional interventional distribution p(yin|xpt, do(tin), ψ) and the
distribution qθ(yin|do(tin),xpt,Dob) parameterized by the model,

Exin,tin,Dob,ψ

[
DKL

[
p(yin|xpt, do(tin), ψ)||qθ(yin|do(tin),xpt,Dob)

] ]
. (3)

Here, the expectation is taken with respect to the data-generating distribution defined in Algorithm 1.

The proof, given in Appendix A, follows from applying the conditional independences between variables implied by
the data-generating process in Algorithm 1.

Let us try to provide some insight about Proposition 1: (i) It does not state that we can estimate all causal effects
in the traditional sense. To see this, note that the expectation is taken with respect to the synthetic data-generating
process. We could even drop the assumption of independent noise terms in our SCMs, to train a model that covers
the non-Markovian case, and the proposition would still hold. (ii) Moreover, since our prior over SCMs does not
necessarily imply identifiability of causal effects, an ideal property of our model would be that qθ(yin|do(tin),xpt,Dob)
accurately captures the uncertainty in the outcome y arising from the unidentifiability of the causal effect of do(tin) on
yin. Section 4.5 discusses empirical results indicating that Do-PFN is indeed able to do so.

Architecture and training details Do-PFN is a transformer with a similar architecture as TabPFN (Hollmann et al.,
2025). In order to adapt this architecture for predicting CIDs, we add a special indicator to the internal representation of
each input dataset to specify that the first column is the treatment and the rest are covariates. Do-PFN has 7.3 million
parameters and is trained with Algorithm 1,details in Appendix B. This takes 48 hours on a single RTX 2080 GPU.

4 Experiments

We evaluate Do-PFN’s performance in CID prediction and CATE estimation against a competitive set of causal and
tabular machine learning baselines. The key takeaway of our results is that Do-PFN achieves performance on par
with models that take the ground truth causal graph into account, and does significantly better than baselines that (like

4We use the do-notation in qθ(y
in|do(tin),xpt,Dob) to indicate that our model approximates the distribution of the outcome

yin given an intervention on tin. This is formally not the result of applying the do-calculus to an observational distribution
qθ(y

in|tin,xpt,Dob).
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Figure 2: Case studies: Visualization of the graph structures of our six causal case studies, requiring Do-PFN to
automatically perform adjustment based on the front-door and back-door criteria. Treatment variables t are visualized
in orange, covariates x in red, and outcomes y in blue. Gray variables represent unobservables, not shown to any of the
methods yet influencing the generated data.

Do-PFN) do not have access to this information, especially on the task of CATE estimation. In addition, Do-PFN
accurately captures the uncertainty arising from the unidentifiability of causal effects while being slightly underconfident
in identifiable cases. Furthermore, our ablations show that Do-PFN works well on small datasets, is robust to varying
base rates of the average treatment effect, and performs consistently on large graph structures. Finally, we evaluate
Do-PFN’s performance on two real-world datasets with widely agreed-upon causal graphs, showing that its predictions
mirror that of our gold-standard baseline.

4.1 Experimental setup

Case studies We introduce several causal case studies that pose unique challenges for causal effect estimation,
traditionally approached via the front-door and back-door criteria (Figure 2). Moreover, the “Unobserved Confounder”
case study features an unidentifiable causal effect, thereby constituting a fundamentally intractable problem for (precise)
causal effect estimation. Please refer to Appendix C.1 for more details.

Synthetic data generation For each case study visualized in Figure 2, we independently sample 100 datasets with
the corresponding graph structure, varying the SCM parameters as described in Appendix B. We also vary the number
of samples, standard deviation of noise terms, as well as edge weights and non-linearities. The structural equations for
our case studies, as well as details regarding how SCM parameters are sampled, are provided in Appendix C.1 and
Appendix Table 1. We additionally generate three case studies not visualized in Figure 2, which ablate over smaller
dataset sizes Mmax ∼ Uniform([5, 100]), complex graph structures with number of nodes K ∼ Uniform([4, 10]), and
finally a “Common Effect” case study which we show to be easily solved even by standard regression models (Appendix
Figure 16).

4.2 Predicting conditional interventional distributions (CIDs)

First, we evaluate our longest trained model, Do-PFN, against a set of baselines for the task of predicting the CID
p(y|do(t),x). In Figure 3, we visualize bar plots depicting normalized mean squared error (MSE) and 95% confidence
intervals of regression baselines across our six causal case studies. For a description of normalized MSE, please see
Appendix C.2. We also provide a critical difference (CD) diagram below, indicating average ranking across all case
studies. A lower CD-value is better, and thick lines connect pairs of models whose performance does not differ by a
significant amount (not applicable in Figure 3).

Effectiveness of pre-training objective In Figure 3, we first observe that Do-PFN performs statistically significantly
better5 than the following tabular regression models: Random Forest, TabPFN (v2), as well as a regression model
pre-trained on our prior to predict observational outcomes (dubbed "Dont-PFN"). This result offers two interesting
findings.

First, the substantial difference in performance between Do-PFN and Dont-PFN provides empirical evidence that our
pre-training (Algorithm 1) approximates something rather different from just a standard posterior predictive distribution
of observational outcomes, which in turn allows Do-PFN to precisely estimate causal effects.

Second, Do-PFN effectively handles the fact that samples in the observational set Dob and Din come from different
data-generating processes, namely the original SCM and the intervened-upon SCM. This causes a mismatch in the joint
distributions p(tob, yob) and p(tin, yin), precisely when there is a directed edge between treatments t and covariates x.

5Significance is assessed using a post-hoc Nemenyi test implemented in the Autorank package (Herbold, 2020).
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Figure 3: Predicting conditional interventional distributions: Bar-plots with 95% confidence intervals and critical
difference (CD) diagrams depicting distributions of normalized mean squared error (MSE) of Do-PFN and our
regression baselines in conditional interventional distribution (CID) prediction. Across our six causal case studies,
Do-PFN achieves statistically significant improvements of MSE over regression baselines, showing that our pre-training
objective is effective for predicting CIDs.

When the treatment and covariates are sampled independently, this mismatch disappears. This is empirically validated
by the similar performance of Do-PFN and tabular regression models on the "Common Effect" case study (Appendix
Figure 16). Furthermore, when the effect of the treatment increases, we observe that TabPFN (v2) deteriorates in
performance across all case studies (Figure 7 left).

Interestingly, Do-PFN also outperforms the other methods in the unidentifiable "Unobserved Confounder" case study.
While it is provably impossible to infer the precise causal effect in this case, data-generating processes can still leave
causal traces that allow for narrowing down the set of possible causal effects Peters et al. (2017). We believe that
Do-PFN utilizes this subtle type of causal information to output at least a plausible set of solutions—in contrast to
traditional methods for which this case would be considered totally unsolvable Pearl (2009). We also observe the
weakest performance of Do-PFN on the "Observed Mediator" case study (Figure 3, Appendix Figure 12), but later
highlight that this results from overprediction in the CID setting that cancels out in CATE estimation.

Implicit graph identification When comparing Do-PFN to our “gold standard” baselines (Appendix Figure 12), we
observe that Do-PFN performs competitively with DoWhy (Int.) and DoWhy (Cntf.), baselines which fit additive noise
models (ANMs) and invertible SCMs respectively given both the observational data and the ground truth graph. DoWhy
then uses the constructed SCM to predict interventional and counterfactual outcomes. We note that DoWhy baselines
apply pre-trained TabPFN (v2) classification and regression models to represent endogenous structural equations,
equipping the resulting causal model with significant representational capacity.

In our CD analysis (Appendix Figure 12), we observe that Do-PFN performs better on average than DoWhy (Int.), and
closer to DoWhy (Cntf.) than any other baseline, despite not having access to the true graph structure. Further, when
comparing different variants of Do-PFN in Appendix Figure 15, we observe that even Do-PFN-Short, our shortest
pre-trained model, already performs similarly with Do-PFN-Graph, a version of Do-PFN which is pre-trained for each
case study on datasets drawn exclusively to the corresponding graph structure.

4.3 Estimating conditional average treatment effects (CATEs)

We now evaluate Do-PFN’s ability in CATE estimation, by calculating

τ̂(xpt) = Eyin∼qθ(yin|do(1),xpt,Dob)[y
in]− Eyin∼qθ(yin|do(0),xpt,Dob)[y

in]. (4)

Comparison to causal machine learning baselines In estimating CATE values, we again observe that our largest
model applied for CATE estimation, Do-PFN-CATE, statistically significantly outperforms state-of-the-art meta-learner
(Künzel et al., 2019) and double machine learning (DML) approaches (Wager and Athey, 2018; Chernozhukov et al.,
2018), (Figure 4). Note that the strong performance (second to Do-PFN-CATE) of TabPFN (v2) used as an S-Learner is
in line with recent findings by Zhang et al. (2025).
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Figure 4: Estimating conditional average treatment effects: Bar-plots with 95% and critical difference (CD)
diagrams depicting distributions of normalized mean squared error (MSE) of Do-PFN-CATE and our causal baselines in
conditional average treatment effect (CATE) estimation. Across our six causal case studies, Do-PFN-CATE significantly
outperforms common baselines for CATE estimation.

Comparison to gold-standard baselines We also observe that in the CATE estimation setting, Do-PFN-CATE
performs in the same equivalence class as DoWhy-CATE (Cntf.) (Appendix Figure 13), outperforming the gold-standard
baseline when the common "a priori" assumption of sufficiency is violated (Figure 6). To investigate this increased
performance in CATE estimation, we highlight in Appendix D.4 how the relatively high bias and low variance in
Do-PFN’s predictions can lead to improved performance in CATE estimation compared to predicting CIDs.

4.4 Hybrid synthetic-real-world data

To assess whether Do-PFN’s strong performance on our synthetic case-studies also extends to real-world-data, we
conduct experiments on two real-world datasets with agreed-upon causal graphs (Appendix Figure 8). Those causal
graphs allow us to simulate gold-standard outcomes using the DoWhy library (Sharma and Kiciman, 2020), which
makes the evaluation of Do-PFN and our baselines possible. The key takeaway of these results is that Do-PFN’s
strong performance on synthetic data seems to extend well to real-world data, producing similar predictions to our
gold-standard baselines which receive access to a widely accepted causal graph.

Amazon Sales The Amazon Sales dataset (Blöbaum et al., 2024) contains data on the effect of special shopping
events ("Shopping Event?") on the profit made from smartphone sales ("Profit"). In terms of predicting interventional
outcomes, we find that DoPFN has a substantially better normalized mean-squared-error (MSE) score than Dont-PFN,
Random Forest, and TabPFN (v2). (Figure 5 left). For CATE estimation, Do-PFN-CATE has a lower median MSE value
than other CATE baselines, which have a relatively large variance in terms of their performance. (Figure 5 center right).
Appendix Figure 9 visualizes the predictions of Do-PFN and our baselines vs. the gold-standard interventional outcomes
for CID prediction and CATE estimation, showing that Do-PFN’s predictions better align with the gold-standard targets.

Figure 5: Hybrid synthetic-real-world data: Bar-plots with 95% confidence intervals depicting distributions of
normalized mean squared error (MSE) of Do-PFN compared to causal and regression baselines in interventional
outcome prediction (left) and conditional average treatment effect (CATE) estimation (right). Do-PFN’s strong
performance in synthetic settings extends to hybrid synthetic-real-world scenarios, especially in CATE estimation.
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Figure 6: Robustness to causal assumptions: Bar plots and 95% confidence intervals depicting the median MSE
in CATE estimation when sufficiency (no unobserved variables) and unconfoundedness (the treatment assignment
is independent of the potential outcomes given the covariates) are fulfilled or violated. We find that while the
performance of all methods degrades when sufficiency and unconfoundedness are violated, Do-PFN maintains the
strongest performance in both settings.

Law School Admissions The Law School Admissions dataset (Figure 8) was drawn from the 1998 LSAC National
Longitudinal Bar Passage Study (Wightman, 1998) and was made popular in the realm of counterfactual fairness due to
its appearance in Kusner et al. (2017), where the variable "Race" was treated as a protected attribute. We note that while
we do not address the topic of algorithmic bias, we simulate the effect on first-year-average ("FYA") from performing
interventions on "Race"6, a common evaluation strategy in causal fairness (Robertson et al., 2024; Kusner et al., 2017).
In terms of CID prediction (Figure 5 center left) and CATE estimation (Figure 5 right), we find that Do-PFN outperforms
all baselines in its approximation of both quantities. We do however, observe especially strong performance in CATE
estimation, where Do-PFN performs significantly better than common CATE estimation baselines.

4.5 Ablation studies

Finally, we perform several ablation studies to evaluate Do-PFN’s behavior across datasets of different sizes, as well as
by varying several aspects of the data-generating SCMs themselves.

Robustness to causal assumptions When comparing the performance of Do-PFN against the set of baselines in
CATE estimation when the causal assumptions of sufficiency (no unobserved variables) and unconfoundedness (the
treatment is independent of the potential outcomes given the covariates) are fulfilled and violated, we find that all
methods, including Do-PFN, benefit from the satisfaction of sufficiency and unconfoundedness (Figure 6). While
those assumptions make the problems substantially easier from a causal perspective, Do-PFN maintains its superior
performance for the cases where sufficiency or unconfoundedness are violated.

Dataset size and complexity First, we observe in Figure 7 (center left) that Do-PFN exhibits strong performance on
small datasets. In an evaluation of MSE in CATE estimation across datasets with a varying number of samples drawn
such that Mmax ∼ Uniform([5, 2000]), we observe that Do-PFN-CATE performs competitively with DoWhy-CATE
(Cntf.) and its performance continues to improve and becomes more consistent as dataset size grows. We also find
that Do-PFN performs competitively to DoWhy-CATE (Cntf.) across graph complexities (Figure 7 right). We further
analyze Do-PFN’s performance across graph complexities in Appendix D.1. Furthermore, we find that Do-PFNs can
effectively use additional data points to alleviate increasing levels of noise (Appendix D.2).

Treatment effect We also show in Figure 7 (left) that Do-PFN remains relatively consistent in MSE across different
base rate levels of the average treatment effect (ATE). This result shows that Do-PFN does not maintain the inductive
bias that the treatment must influence the outcome and is robust to different magnitudes of the true ATE. This is
beneficial in cases of problem misspecification, for example when a specified treatment does not influence an outcome.

Uncertainty calibration Next, we explore Do-PFN’s uncertainty calibration (Appendix D.3), where we find that
Do-PFN is slightly under-confident for theoretically identifiable case studies. In the "Unobserved Confounder" case
study, the model’s high uncertainty is reflected by a relatively large entropy in its output distribution (Appendix 17).
However, our PICP results show that the model’s uncertainty for this case study is correctly calibrated. Overall, our
results indicate that Do-PFN is able to correctly capture the variability in causal effects, even when the variability arises
due to unidentifiability.

6We note that Race in the lawschool dataset is typically treated as a binary variable. We very much disagree with this formulation,
and acknowledge that the term "ethnicity" better describes this complex social construct.
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Figure 7: Ablation studies: Do-PFN is relatively insensitive to changing base rates of ATEs (left), improves with
increased number of observational samples (center-left), and remains consistent on large graph structures (right).

5 Discussion

We introduced Do-PFN, a pre-trained transformer leveraging ICL to meta-learn to predict interventional outcomes
from observational data. Our empirical results on carefully controlled synthetic and hybrid synthetic-real-world setups
suggest that Do-PFN outperforms a strong set of tabular and causal machine learning baselines, while performing
competitively with equally expressive models which are provided the true underlying causal graph. Furthermore,
Do-PFN performs strongly on small datasets, shows invariance to graph complexity and base treatment effects, and
correctly accounts for uncertainty arising from unidentifiability. Nevertheless, we need to discuss a range of limitations
and future work.

Real-world benchmarking First, Do-PFN’s generalization capability critically depends on its synthetic prior over
SCMs p(ψ), adequately capturing real-world causal complexity. As our current validation is mainly based on synthetic
data, Do-PFN’s robustness to prior-reality mismatches and its performance on diverse real-world datasets require
further systematic exploration, alongside principled methods for prior design and validation, as well as comprehensive
benchmarks for causal effect estimation. What makes us optimistic are our initial hybrid synthetic-real-world results
and empirical findings from the community providing strong evidence that synthetic prior fitting can lead to strong
real-world performance (Hollmann et al., 2025; Hoo et al., 2024; Reuter et al., 2025).

Identifiability theory and statistical guarantees While our experiments suggest Do-PFN can reflect uncertainty
from its training prior (including from SCMs with non-identifiable effects), a full theoretical characterization of how
this learned predictive uncertainty aligns with formal causal identifiability bounds remains a nontrivial area for future
investigation. Do-PFN’s amortized inference approach offers efficiency in the face of small data, but has different
theoretical underpinnings regarding statistical guarantees compared to traditional, non-amortized estimators under
known causal structures Nagler (2023). However, the statistical theory for such amortized models is still developing.

Trust and interpretability Our theoretical results in Proposition 1 combined with Do-PFN’s strong empirical
performance on diverse causal setting, imply that Do-PFN is a highly effective approach for performing causal inference.
It is therefore possible that Do-PFN follows the traditional approach to causal reasoning by, first, discovering the
causal structure of a problem which allows, in a second step, to carry out the appropriate adjustment. Future work in
mechanistic interpretability of Do-PFN would help verify its inner workings as well as provide an improved sense of
transparency and trust.

Extensions to further causal tasks Many configurations and types of causal challenges were necessarily not addressed
in this initial work. These include, for instance, a broader array of intervention types beyond binary interventions and
counterfactuals, non-i.i.d. input data, and various observational data characteristics or modalities not explicitly part of
our current experimental scope. Incorporating them into our data-generating prior can give us a completely new handle
on some of these hard problems.

To conclude, the key contribution of Do-PFN is a novel methodology for causal effect estimation. We are optimistic
about its prospects to become part of the standard ML toolkit, thus helping to give causal effect estimation the broad
accessibility that its real-world relevance deserves.
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A Proof of Proposition 1

The risk for a single interventional data point when using the NLL loss, as in Algorithm 1 takes the following form:

Rθ =

∫ ∫ ∫ ∫
− log(qθ(y

in|do(tin),xpt,Dob))p(Dob, tin, yin,xpt)dDobdtindyindxpt (5)

Let’s consider p(Dob, tin, yin,xpt). Then we can obtain by first marginalizing out the distribution p(ψ) of Structural
Causal Models (SCMs) and, second, utilizing the factorization of the joint distribution implied by the data generating
process in Algorithm 1:

p(Dob, tin, yin,xpt) =
∫
p(Dob, tin, yin,xpt, ψ)dψ = ∫

p(yin,xpt|do(tin), ψ)p(tin|Dob)p(Dob|ψ)p(ψ)dψ (6)

Now, we can use that

p(yin,xpt|do(tin), ψ) = p(yin|xpt, do(tin), ψ)p(xpt|do(tin), ψ).

Further:

p(xpt|do(tin), ψ)p(tin|Dob)p(Dob|ψ)p(ψ) = p(Dob, tin,xpt, ψ). (7)

This implies

p(Dob, tin, yin,xpt) =
∫
p(yin|xpt, do(tin), ψ)p(Dob, tin,xpt, ψ)dψ (8)

Plugging this into equation 5 followed by using that the cross entropy between two distributions p and q is equal to
the Kullback-Leibler divergence between p and q plus the entropy of p, formally H(p, q) = H(p) + DKL(p||q), a fact
used by Müller et al. (2022) and Barber and Agakov (2004) in analogous scenarios, yields:

Rθ =
∫ ∫ ∫ ∫ ∫

− log(qθ(y
in|do(tin),xpt,Dob))

p(yin|xpt, do(tin), ψ)p(Dob, tin,xpt, ψ)dDobdtindyindxptdψ

=

∫ ∫ ∫ ∫
DKL

[
p(yin|xpt, do(tin), ψ)||qθ(yin|do(tin),xpt,Dob)

]
p(Dob, tin,xpt, ψ)dDobdtindxptdψ + C (9)

This implies that minimizingRθ results in a (forward) Kullback-Leibler optimal approximation of p(yin|do(tin), ψ,xs)
with the model qθ(yin|do(tin),xs,Dob) in expectation over the data simulated from p(ψ,Dob, tin,xpt).
Please note that analogous to PFNs, the optimality only holds when the expectation is taken with respect to the synthetic
data-generating process. However, theoretical results by Nagler (2023) and a plethora of empirical findings regarding
the transferability of PFNs to real-world scenarios, as well as related approaches (Hollmann et al., 2025; Hoo et al.,
2024; Reuter et al., 2025), provide evidence that synthetic prior fitting can lead to strong real-world performance.

B Details on the prior-fitting procedure

In this section, we provide the details of the data-generating process in Algorithm 1 that represents our modeling
assumptions. From the perspective of PFNs, this data-generating process represents Do-PFN’s "prior". Concretely, our
prior-fitting procedure involves the following key steps:

14



Do-PFN: In-Context Learning for Causal Effect Estimation

Sampling the SCM: First, for every iteration i = 1, 2, . . . , N , an SCM ψi is sampled. This is achieved by first
sampling a DAG via topological sorting of vertices (Manber, 1989). For each node k in the graph, we uniformly
at random sample the nonlinearity γ to be one of the following functions: the quadratic function x 7→ x2, x 7→
ReLU(x), and x 7→ tanh(x). We define the mechanisms in the SCM to take the form of an additive noise model
(ANM) fk(zPA(k), ϵk) = γ(

∑
l∈PA(k) wlzl) + ϵk. The weights of the SCM are sampled using a Kaiming initialization

wl ∼ Uniform(− 1√
|PA(k)|

, 1√
|PA(k)|

) for l = 1, 2, . . . , |PA(k)|, where |PA(k)| denotes the number of parents of node

k.

Sampling observational data: Next, observational data is sampled according to the SCM ψi. More specifically, a
dataset Dobi is filled with Mob data points, where the number of data points is drawn uniformly between Mmin = 10
and Mmax = 2, 200. Each element in Dobi is generated by first sampling a noise vector ϵj ∼ p(ϵ) which is passed
through the SCM to generate each element yobj , t

ob
j ,x

ob
j .

Sampling interventional data: To sample an element in the interventional dataset Dini , with M in =Mmax −Mob

data points, first, a noise vector ϵk ∼ p(ϵ) is sampled again. Subsequently a covariate-vector xptk is sampled from
p(x|ψi, ϵk). This ensures that the vector xptk characterizes the subject k prior to the intervention. After sampling the
value for the treatment tink , we perform the intervention do(tink ) and sample yink from the intervened-upon SCM using
the same noise ϵk as before7.

Gradient descent For each iteration i = 1, 2, . . . , N , an observational dataset Dobi and an interventional dataset
Dini are generated. These datasets are utilized to compute the negative log-likelihood under our model qθ. This loss
is calculated with respect to predicting the interventional outcome yink based on the value of the intervention tink , the
covariates xptk , and the observational dataset Dobi . Subsequently, a gradient step is taken on the negative log-likelihood.
In practice, we perform mini-batch stochastic gradient descent using the Adam optimizer (Kingma and Ba, 2014).

C Experimental Details

C.1 Details on the synthetic case studies

In this section we provide the details on all considered case studies from Section 4.1. The standard deviation σexo of
the exogenous noise is sampled from σexo ∼ Uniform([1, 3]). For the standard deviation of the additive noise terms,
we sample β ∼ Beta(1, 5), and then set σϵ = 0.3 · β.

The functions fzk take the form fa(zk, ϵ) = γ(
∑
l∈PA(k) wlzl) + ϵ. The weights of the SCM are sampled using

a Kaiming initialization wl ∼ Uniform(− 1√
|PA(k)|

, 1√
|PA(k)|

) for l = 1, 2, . . . , |PA(k)|, where |PA(k)| denotes the

number of parents of node k. The nonlinearities fa are sampled uniformly at random from the set {f1, f2, f3} where
f1(x) = x2, f2(x) = tanh(x) and f3 = ReLU(x) = max(0, x). Details on the case studies can be found in Table 1.

7Because the noise is held constant to produce the pre-interventional covariate-vector, xpt
k , and interventional outcomes, yin

k , this
process can also be seen as simulating single potential outcomes.
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Setting Equations

Observed Confounder

ϵt, ϵy ∼ N (0, σϵ)

x1 ∼ N (0, σexo)

t = ft(x1, ϵt)

y = fy(x1, t, ϵy)

Observed Mediator

ϵx1 , ϵy ∼ N (0, σϵ)

t ∼ Uniform({0, 1})
x1 = fx1

(t, ϵx1
)

y = fy(x1, t, ϵy)

Confounder + Mediator

ϵx1 , ϵt, ϵy ∼ N (0, σϵ)

x2 ∼ N (0, σexo)

t = ft(x1, ϵt)

x1 = fx1
(t, ϵx1

)

y = fy(x1, x2, t, ϵy)

Unobserved Confounder

ϵt, ϵy ∼ N (0, σϵ)

x1, x2 ∼ N (0, σexo)

t = ft(x1, x2, ϵt)

x1 = fx1
(t, ϵx1

)

y = fy(x1, x2, t, ϵy)

Back-Door Criterion

ϵx1 , ϵt, ϵy ∼ N (0, σϵ)

x2 ∼ N (0, σexo)

t = ft(x1, ϵt)

x1 = fx1
(x2, ϵx1

)

y = fy(x1, x2, ϵy)

Front-Door Criterion

ϵx1 , ϵt, ϵy ∼ N (0, σϵ)

x2 ∼ N (0, σexo)

t = ft(x1, ϵt)

x1 = fx1
(x2, ϵx1

)

y = fy(x1, x2, ϵy)

Table 1: Structural equations for all causal case studies.
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C.2 Evaluation metric

We evaluate our results in terms of normalized mean squared error (MSE), as it allows results to be compared across
datasets. We define normlized MSE below:

MSE(y, ŷ) =
1

n

n∑
i=1

[
yi − ŷi

max(y)−min(y)

]2
(10)

C.3 Description of baselines

C.3.1 Conditional interventional distribution prediction

• Dont-PFN: a TabPFN regression model (Hollmann et al., 2025) pre-trained on our prior to approximate the
posterior predictive distribution (PPD) p(yob|xob,Dob).

• DoWhy (Int./Cntf.): a structural causal model ψ fit to observational samples Dob and the graph structure Gψ .
The constructed SCM is used to predict interventional (Int.) and counterfactual (Cntf.) outcomes. Crucially,
TabPFNClassifier and TabPFNRegressor models (Hollmann et al., 2025) are used approximate binary and
continuous structural equations.

• Random Forest: an ensemble of decision trees Breiman (2001) trained on Dob

• Do-PFN-Graph: a TabPFN regression model pre-trained for 5 hours to approximate the CID p(ydo|xob,Dob)
on fixed graph structures from our case studies.

• Do-PFN-Short: a TabPFN regression model pre-trained for 20 hours on varying graph structures of up to 5
nodes to approximate the CID p(ydo|xob,Dob)

• Do-PFN: a TabPFN regression model pre-trained for 40 hours on varying graph structures of up to 10 nodes to
approximate the CID p(ydo|xob,Dob)

• Do-PFN-Mixed: Do-PFN-Short pre-trained varying whether additive noise terms are sampled from zero-mean
Gaussian, Laplacian, Students-T, and Gumbel distributions.

C.3.2 Conditional average treatment effect estimation

• Causal Forest (DML): a double machine learning (dML) approach based on (Wager and Athey, 2018) that
combines multiple causal trees to estimate conditional average treatment effects (CATEs). Hyperparameters
are tuned using exhaustive search.

• Do-PFN-CATE: Do-PFN applied to predict the specific quantity:

τ̂ = Eyin∼qθ(yin|do(tin=1),xpt,Dob)[y
in]− Eyin∼qθ(yin|do(tin=0),xpt,Dob)[y

in] (11)

• DoWhy-CATE (Int./Cntf.): DoWhy (Int./Cntf.) used as an S-Learner (Künzel et al., 2019) to estimate
conditional average treatment effects (CATEs). When DoWhy (Cntf.) is used, noise terms are inferred and
held constant across forward passes.

• Dont-PFN-CATE: Dont-PFN used as an S-Learner (Künzel et al., 2019) to estimate conditional average
treatment effects (CATEs)

C.3.3 Software

We use Pytorch (Paszke, 2019) to implement all our experiments. Our implementation of the causal prior is based on
the Causal Playground library (Sauter et al., 2024) and the codebase used for TabPFN (Hollmann et al., 2023, 2025).
We use Matplotlib (Hunter, 2007), Autorank (Herbold, 2020) and Seaborn (Waskom, 2021) for our plots.

D Supplementary Results

D.1 Graph size and complexity

We evaluate Do-PFN’s performance across data generated from graphs of increasing complexity, sampling 500 datasets
generated with graph structures consisting of 4 to 10 nodes and 2 to 43 edges. The result is visualized in Figure 7
(right). We note that while our data-generating mechanisms are relatively simple from a mathematical perspective,
graph identification is a combinatorially hard problem, with the number of unique Directed Acyclic Graphs (DAGs) of
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𝑨𝒅	𝑺𝒑𝒆𝒏𝒅

𝑷𝒂𝒈𝒆	𝑽𝒊𝒆𝒘𝒔

𝑹𝒆𝒗𝒆𝒏𝒖𝒆

𝑺𝒉𝒐𝒑𝒑𝒊𝒏𝒈	
𝑬𝒗𝒆𝒏𝒕?

𝑼𝒏𝒊𝒕	𝑷𝒓𝒊𝒄𝒆

𝑺𝒐𝒍𝒅	𝑼𝒏𝒊𝒕𝒔

𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍
𝑪𝒐𝒔𝒕

𝑷𝒓𝒐𝒇𝒊𝒕

Amazon Sales

Figure 8: Real-world case studies: Widely agreed-upon causal graphs for our two real-world case-studies: Amazon
Sales and Law School Admissions.

Figure 9: Amazon Sales: Scatter plots depicting the match between baseline predictions with gold standard outcomes
produced by Do-Why-(CATE) (Int./Cntf.). Green scatter points represent individuals for which the intervention
do(ShoppingEvent = 1) is applied, while blue points represent do(ShoppingEvent = 0).

10 nodes reaching 4.17× 1018. Do-PFN performs competitively to DoWhy-CATE (Cntf.) across graph complexities,
with slightly larger improvements for more complex graphs.

D.2 Robustness to additive noise

We also highlight in Figure 11 (left) that the performance of Do-PFN decreases with an increase in the standard deviation
of additive noise, which corresponds to a larger irreducible error. However, we also observe in Figure 11 (center-right)
that Do-PFN’s performance for different levels of additive noise seems to increase with dataset size. This means that
the MSE for datasets with a certain amount of additive noise can be reduced up to a certain extent with more data.
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Figure 10: Law School Admissions: Scatter plots depicting the match between baseline predictions with gold
standard outcomes produced by Do-Why-(CATE) (Int./Cntf.). Green scatter points represent individuals for which the
intervention do(Race = 1) is applied, while blue points represent the intervention do(Race = 0).

Figure 11: Robustness to additive noise: Evaluation of Do-PFN’s performance in CID prediction and CATE estimation
across different quantiles (Q1-Q6) of additive noise standard deviation. The density plot (left) shows that Do-PFN’s
performance decreases with (irreducible) additive noise. However, the heatmap (center) shows that for datasets with
similar additive noise levels, Do-PFN’s performance increases with dataset size. This effect is even stronger than for
DoWhy-CATE (Cntf.).
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Figure 12: Gold-standard comparison (CID): Bar-plots with 95% confidence intervals and critical difference (CD)
diagrams depicting distributions of normalized mean squared error (MSE) of Do-PFN and our "gold-standard" baselines
in conditional interventional distribution (CID) estimation on our six synthetic case studies. Do-PFN significantly
outperforms Do-PFN-Graph and DoWhy (Int.), while performing closer to DoWhy (Cntf.) than other baselines.

Figure 13: Gold-standard comparison (CATE): Bar-plots with 95% confidence intervals and critical difference (CD)
diagrams depicting distributions of normalized mean squared error (MSE) of variants of Do-PFN and our baselines in
conditional average treatment effect (CATE) estimation on our six synthetic case studies. Do-PFN-CATE outperforms
DoWhy-CATE (Int.) and performs competitively with DoWhy-CATE (Cntf.).
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Figure 14: Comparison on regression problems: Bar-plots with 95% confidence intervals and critical difference (CD)
diagrams depicting distributions of normalized mean squared error (MSE) of variants of Do-PFN and our baselines
when predicting observational outcomes (no interventions) in our six causal case studies.

Figure 15: Comparison of Do-PFN variants (CID): Bar-plots with 95% confidence intervals and critical difference
(CD) diagrams depicting distributions of normalized mean squared error (MSE) of Do-PFN variants in conditional
interventional distribution (CID) estimation on our six synthetic case studies. Do-PFN significantly outperforms other
variants except Do-PFN-Mixed, which achieves statistically similar performance in half the pre-training time.
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𝒙𝟏

𝒚𝒕

Common
Effect

𝝐𝒚	~	𝑵 𝟎, 𝝈𝝐
𝒙𝟏 ~	𝑵 𝟎, 𝝈𝒆𝒙𝒐
t	~	𝑼 𝟎, 𝟏
𝒚 = 𝒇 𝒙𝟏, 𝒕, 𝝐𝒚

Figure 16: Common effect case study: Visualization of graph structure and structural equations (left) for our "common
effect" case study, as well as box plots depicting distributions of normalized mean squared error (MSE) of Do-PFN
variants compared to regression baselines in conditional interventional distribution prediction. Regression baselines
perform similarly to Do-PFN variants, as the intervention does not cause a distribution shift between Dob and Din.

Figure 17: Uncertainty quantification: Cross-entropy (CE) loss (right) and entropy (left) of Do-PFN’s bar distribution
output. Do-PFN is highly uncertain on the “Unobserved Confounder” case study due to unidentifiability. Do-PFN also
shows high uncertainty on the “Observed Mediator” case study, which we argue is due to its only exogenous term being
a binary variable, causing the continuous effect in the outcome to only come from additive noise.)
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D.3 Uncertainty calibration

We investigate the calibration of Do-PFN by visualizing the prediction interval coverage probability (PICP) in Figure 7.
A PICP curve equal to the 45-degree diagonal corresponds to a model consistently yielding prediction intervals with
exactly the desired coverage. Being above the diagonal corresponds to under-confident and being below the diagonal to
over-confident prediction intervals.

In summary, we find that Do-PFN is slightly underconfident for identifiable case-studies, but correctly specifies the
uncertainty arising from unidentifiable causal effects.

Figure 18: Uncertainty calibration: Prediction interval coverage probability (PICP) plots for the "Observed Mediator",
"Confounder + Mediator", "Backdoor Criterion" and "Frontdoor Criterion" cases. The solid blue line shows the
coverage and standard deviation achieved by Do-PFN, spanning desired probabilities from 0 to 1. The dashed line
represents the ideal calibration achievable with access to the ground-truth CID. Do-PFN is slightly under-confident for
identifiable case studies, and, crucially, correctly unconfident for the "unobserved confounder" case.

D.4 Bias decomposition

In order to investigate Do-PFN’s comparatively strong performance in CATE estimation as opposed to CID prediction
where it performed better than DoWhy (Int.) but worse than DoWhy (Cntf.), we decompose the bias of Do-PFN and
DoWhy (Cntf.) under the two interventions do(0) and do(1), calculating the median of the average residual errors across
all datasets. We observe in Figure 19 that while DoWhy (Cntf.) has low bias for all case studies except "Unobserved
Confounder", Do-PFN’s bias is larger, however approximately equal between interventions do(0) and do(1). This hurts
Do-PFN’s performance in CID prediction as it systematically slightly over-predicts. However, in CATE estimation, the
bias terms cancel out, resulting in a better CATE estimate relative to predicting interventional outcomes.
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Figure 19: Bias Decomposition: The median of the bias of DoWhy (Cntf.) and Do-PFN across 100 synthetic datasets
for the interventions do(0) and do(1). The gold-standard DoWhy (Cntf.) maintains a bias very close to zero for all
case-studies while Do-PFN has a small positive bias that takes almost the same value for do(0) and do(1).
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