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Humans can generalize from only a few examples and from little pretraining on similar tasks. Yet,
machine learning (ML) typically requires large data to learn or pre-learn to transfer. Motivated by
nativism and artificial general intelligence, we directly model human-innate priors in abstract visual
tasks such as character and doodle recognition. This yields a white-box model that learns general-
appearance similarity by mimicking how humans naturally “distort” an object at first sight. Using just
nearest-neighbor classification on this cognitively-inspired similarity space, we achieve human-level
recognition with only 1–10 examples per class and no pretraining. This differs from few-shot learning
using massive pretraining. In the only-few-shot regime of MNIST, EMNIST, Omniglot, and QuickDraw
benchmarks, we outperform both modern neural networks and classical ML. For unsupervised
learning, by learning the non-Euclidean, general-appearance similarity space in a k-means style, we
achievemultifarious visual realizations of abstract concepts bygenerating human-intuitive archetypes
as cluster centroids.

Modern machine learning (ML) has made remarkable progress, but this is
accompanied by increasing model complexity, with hundreds of neural
layers (e.g., ResNet-152) and millions to trillions of parameters (e.g., ViT:
86-632M,GPT-4: 1T). This results in a huge appetite for data and resources,
making data curation hard and energy costs irresponsibly high, which
particularly challenges domains like low-resource languages or rapidly-
evolving pandemics. The increased model complexity further leads to
inscrutability andnonintuitiveness,making themodelhardboth for users to
control and for developers to tune (e.g., hyperparameters, architecture). As
such, there is a need for ML models that are prior- and data-efficient1, that
are human-like2, and that exhibit human-interpretable behaviors3.

Regarding data-efficiency or learning from very few data in particular,
few-shot learning (FSL)4–6 via transfer learning7–9 has succeeded in some
data-scarce scenarios, but requires “relevance” between the transferring
source and target10. However, knowing such relevance in advance and
understanding what is transferred are often black arts. This is especially the
case in new, understudied domains, with a risk of unwanted negative
transfers7,11. There has also been a shift from “big transfer”12 to “small
transfer”13, introducing a need for reduced pretraining. We push this
reduction to the limit—no pretraining at all. As such, we introduce the term
only-few-shot, to differentiate it from standard few-shot learning that uses
pretraining.

These engineering challenges are intertwined with a scientific puzzle:
how do humans learn somuch from so little14? Given one instance, humans
abstract from it, e.g., conceive of further equivalent instances, and from a
nativist perspective, many of humans’ abstraction abilities are innate15.
Nativism holds that certain human cognitive abilities are innate rather than
learned from a blank slate. Babies can tell things apart based on general
appearance—how things look in general—knowing theymay be translated,

rotated, scaled, or deformed. Sloutsky et al.16 further showed humans’ early
induction is mainly based on appearance similarity rather than kind
information. Babies can easily see similarity between awrittendigit “1” anda
crutch before knowing what they are. This view of categorization after
appearance similarity yields our focus on learning such a similarity, after
which simpleMLmodels such as k-NNor k-means can be used tomaintain
interpretability—people canunderstand both howaprediction ismade, e.g.,
via “nearest neighbors”, and in what sense they are “neighbors”.

We present a theoretically sound, white-box model that mimics how
humans learn and generalize from only a few examples. By “white-box”we
mean that not only the model output but also the full modeling process is
interpretable, i.e., the model is transparent. More specifically, we devise a
distortable canvas to computationally realize the nativist intuition about
humans’ innate perception. The idea is to view every image being smoothly
painted onan elastic (e.g., rubber) canvas that can be distorted inmanyways
(Fig. 1a). Due to elasticity/viscosity, larger distortions expend more energy,
so intuitively, two images have a similar appearance if one can transform
into the otherwith little energy. This yields ourmathematical formulationof
general-appearance similarity basedonminimal canvasdistortion (DV ) and
color distortion (DC).

We address three main technical challenges in learning this similarity.
First, we parameterize and efficiently handle all transformations (including
those without a formula) instead of handpicking special ones by domain
knowledge (like scale, translation, and rotation invariances commonly used
in classical computer vision). Second,we introduce an abstractedmulti-level
gradient descent (AMGD) method to mimic humans’ hierarchical
abstraction ability and lift the curse of local minima during optimization.
Third, we make gradient descent, and hence the full optimization process,
interpretable by eliciting the full transformationflow (Fig. 1b) instead of just
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the final transformation (Fig. 1c). These flows produce insights that either
match our intuition (“Yes, that is what I would naturally do to transform 7
into 1.”) or unveil new perspectives (“I did not realize this other way of
transforming 7 into 1. Now I see it and it makes sense to me.”). It is this
interpretability at the level of the learning process that makes the learning
model transparent, or white-box.

Our distortable canvas advances upon other transformation-based
models using morphing17,18, elastic matching19, optimal transport20, group
theory21–23, invariances24, or equivariances25. The main difference is that we
do not handpick or restrict the type of transformation, but instead, learn the
transformation in the same pass as we learn similarity. Our AMGD shares
similar ideas with annealed gradient descent26 but with multi-level
abstractions applied directly to the GD parameter space rather than the
data set. Compared to data augmentation27, we introduce transformations
into the model rather than the data, which can be viewed as infinite data
augmentation with perfect learning.

We achieved success on abstract visual tasks such as character and
doodle recognition.On imageclassificationbenchmarks includingMNIST28,
EMNIST29, as well as the more challenging Omniglot2 and QuickDraw30

datasets, simply running the nearest-neighbor method on our learned
similarity space outperformed both contemporary neural networks and
classical ML in the tiny-data or single-datum regime. To name a few
highlights: with no pretraining, ourmodel reached 80%MNIST accuracy
using only thefirst training image per class (reached 90%using only the first
four) andachievednear-humanperformanceonOmniglot andQuickDraw
one-shot learning tasks. In unsupervised learning, simply integrating k-
means into our model captured human-level visual abstractions, which
generated human-intuitive archetypes as cluster centroids (e.g., different
ways of writing “7” or doodling a giraffe).

The idea of running a nearest-neighbor classifier in our learned simi-
larity space parallels exemplar-based classification in the feature space
learned from large vision models (e.g., deep nearest centroids), promoting
simplicity, transparency, explainability, as well as insight into the latent data
structure31. The key difference is that our work centers on metric learning
(rather than classification) and targets the tiny-data regime. It is againworth
noting that our results are achieved in the only-one-shot (or only-few-shot)
setting with absolutely no extra data (labeled or unlabeled) for pretraining
and no data augmentation. For instance, one might mistakenly think that
the one-shot MNIST result of 90.9% reported by Mocanu and Mocanu32

rivalswhatweachieve, but it is abest-of-five-typeperformancemetric rather
than standard test accuracy. The closest setting to only-one-shot can be
found in their paper’s Fig. 1—particularly the left end of the curve corre-
sponding to using zero unlabeled data—which shows about 45% (without
data augmentation) and 60% (with data augmentation) standard test
accuracy, both far below our only-one-shot result (80%).

Results
UsingDC- orDV -distance in the nearest-neighbor method yields ourDC-
or DV -nearest-neighbor classifier. The transparency of the distortable
canvas and the simplicity of nearest-neighbors makes the whole metric-
learning and classification process human intuitive and interpretable. We
demonstrate classification performances on hand-drawn characters/doo-
dles from four benchmarks. These include theMNIST (digits) andEMNIST
(letters) datasets restricted to the tiny-data regime, as well as the Omniglot
(scripts) and the QuickDraw (doodles) one-shot learning challenges.

MNIST only-few-shot classification
The original benchmark has 60k images for training and 10k for testing,
spanning 10 classes. To evaluate how a model performs in the tiny data
regime, we train the model on the firstN images per class from the original
training set, test it on the full test set, and record test accuracy forN= 1, 2, 3,
…. We compare our model to both contemporary neural networks and
classical ML models, including TextCaps33 that has state-of-the-art perfor-
mance in the small-data regime, SVM,nearest-neighbor, etc. ClassicalML is
included to show that success in the tiny-data regime does not mean using
simple models. For stochastic models, we record mean and standard
deviation from 5 independent runs. TextCaps only runs when N≥4 and
sometimes returns a random guess (10%), so we record trimmedmean and
standard deviation from 11 runs (where we trim the best two and worst
four).We also report results from the literature that ranMNIST in a similar
tiny-data setting, including FSL that uses extra data for pretraining (whereas
all our other comparison models do not). These results are from the same
training-testing sizes but not the same data sets, and hence are considered
indirect comparisons. We present all results in Fig. 2a.

EMNIST-letters only-few-shot classification
The original benchmark has 4.8k training images per class and 0.8k test
images per class, spanning 26 classes of case-insensitive English letters. We

Fig. 1 | Demonstration of a distortable canvas.
a transformations, b flows, and c distortions.
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keep the same experimental setting as inMNIST (except for TextCaps being
more stable now:we do 7 independent runs for eachN and trim the best and
the worst). Results are shown in Fig. 2b. EMNIST-letters is harder, not only
withmore classes but alsomore intrinsic ambiguities (e.g., l and I, likewise h
andn, can bewritten very similarly; while r andR look different despite their
semantic similarity). So, all models perform significantly worse than in
MNIST. The intrinsic ambiguity, as well as more labeling errors, narrows
our superiority overothermodels as training size increases. This is especially
true for the state-of-the-art TextCapsmodel, catching up quickly in Fig. 2b.

Being sensitive to ambiguities andoutliers, however, is not a result from
our distortable canvasmodel. It is due to the nearest-neighbor inference. To
improve, we might consider integrating our model with more robust clas-
sifiers, e.g., k-nearest-neighbor (k-NN)with proper voting. However, k-NN
isnot very effective in the tiny-data regime, not onlybecause the training size
can be as small as k but also there is little room tohold out a validation set for
selecting k. An adaptive k-NN may be desired, with k remaining 1 in the
tiny-data regime and becoming tunable when training size increases to a
level that affords a held-out validation set. A related issue due to lacking
validation data is in picking a proper model configuration. One may expect
better results from any comparison model in Fig. 2 by trying new config-
urationswhichhowever canbe ablackart. ForTextCaps,weused its original
implementation and configuration; for the rest, we used scikit-learn
implementations with default configurations (except for tweaks like neural-
network size and regularization for the tiny-data setting). By contrast, our

distortable canvas has little to tune, other than the ðĜ; ρcÞ-solution path in
AMGD. In general, the more gradual the path is, the better. We picked
ðĜ; ρcÞ based on runtime and image size (28 × 28 here) only.

Omniglot one-shot classification
The Omniglot dataset contains handwritten characters from 50 different
alphabets, which include historical, present, and artificial scripts (e.g.,
Hebrew,Korean, “Futurama”) and are farmore complex thanMNISTdigits
and EMNIST letters. The characters are stored as both images and stroke
movements. Unlike MNIST/EMNIST that come with large training data,
Omniglot was designed for human-level concept learning from small data.
Its one-shot classification task was benchmarked to evaluate how humans
andmachines can learn from a single example. This benchmark contains 20
independent runs of 20-way within-alphabet classifications. The (2k− 1)th
and (2k)th runs for k = 1, …, 10 use the same set of 20 characters from a
single alphabet. Each runuses 40 images: one training andone test imageper
character. The unit task here is for each test image, to predict the character
class it belongs to (one of 20), based on the 20 training images. In total, there
are 400 independent unit tasks across all 20 runs. Figure 3a shows a unit task
(in red) and the first two runs, covering 1 alphabet, 20 characters, and 80
distinct images.

The Omniglot benchmark adopts the standard FSL setting, where a
background set is also provided for pretraining. The original background set
contained 964 character classes from 30 alphabets; later, a reduced

Fig. 2 | MNIST and EMNIST only-few-shot classification. a shows sample images
from MNIST, and b shows those from EMNIST. The first 1–20 training images per
class and the full test set are used. For each classifier, we plot test accuracy versus
training sizeN, as well as the smallestN needed to reach an accuracy threshold (90%

for MNIST and 75% for EMNIST due to increased difficulty). Our model outper-
forms all other comparison models for all N, requiring the least amount of training
data to achieve strong performance.
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background set was proposed to make the classification task more chal-
lenging. We dispense with any background set and any stroke information
when running our DC-nearest-neighbor. In each unit task, we predict the
test image based on one and only that training image per character, and we
read all images from raw pixels. Shown in Fig. 3b, our model (with a 6.75%
error rate) approaches human performance (4.5%), and despite not using
the background set or stroke information, outperforms all models in the
Omniglot leaderboard13 but BPL—specifically designed for Omniglot by
making additional use of both the background set and the stroke
information.

QuickDraw only-one-shot classification
Beyond handwritten characters, we experiment with recognizing human
doodles in the only-one-shot setting. Unlike writing systems designed for
people to follow certain ways of writing, there is no “correct” way of
doodling a particular object or concept in mind—everyone has their own
picture of Hamlet and hurricanes. Further, unlike photos, doodles are often
unfaithful visual reproductions of an object’s outlook: many doodles only

capture core features abstractly. These attributes make doodle recognition a
fundamentally much harder task, even for humans. In this experiment, we
use Google’s QuickDraw dataset containing 345 categories of human
doodles. QuickDrawdata are visuallymuchmore abstract and difficult than
other datasets of human sketches such as Sketchy34,35.

Mimicking the Omniglot setup, we randomly divide all categories into
23 runs (15 categories per run). In each run, we randomly sample two doodle
images from each category—one for training and one for testing—forming a
training and a test set, each containing precisely one image per category. The
unit taskhere is for each test image, topredict thedoodle category it belongs to
(one of 15), based on just the 15 training images. Every unit task is an
independent one-shot 15-way classification problem, meaning the fact that
every test image is from a distinct category is not leveraged. In total, there are
345 unit tasks across all runs. Figure 4a illustrates the training and test images
in one run and a unit task (in red). Allmodels in this experiment read images
directly from raw pixels, without using stroke-movement information.
Unlike Omniglot that adopts the standard FSL setting, all models here have
no access to any pretraining set and hence reside in the only-one-shot setting.

Fig. 3 | Omniglot one-shot classification. a shows
the first two runs out of 20 total runs: the red outline
marks one of 400 unit tasks, each consisting of 1 test
and 20 training images. b displays the error-rate
leaderboard: unlike all other comparison models,
ours requires no background set for pretraining and
achieves near-human performance.

Fig. 4 | QuickDraw only-one-shot doodle classification. a shows one sample run
that illustrates the training images, test images, and a unit task marked in red.
b shows test accuracies from various models, including ours and human perfor-
mance. Accuracy is reported as a percentage, with error bars indicating themean and
the standard deviation across five independent runs. Error bars are omitted for

deterministic models. c displays inter-rater agreement, measured by Fleiss’ kappa,
between our model and human performances. It shows that our model not only
achieves near-human accuracy but also makes similar mistakes. Human results are
from five healthy subjects, H1–H5, aged 20 to 29.
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Shown in Fig. 4b, our model (with a 34.2% accuracy) approaches
human performance (39.7 ± 4.6%) and significantly outperforms all other
models. Due to the only-one-shot setting, there is no extra room for a
validation split normally used for configuration/hyperparameter tuning. All
comparison models in Fig. 4b use their standard implementation in
sklearn or keras, e.g., the convolution neural network (CNN) and the
vision transformer (ViT) are from keras’ code examples with proven test
performance in the standard MNIST and CIFAR-100 benchmark. Our
model is the same DC-nearest-neighbor used in the previous MNIST/
EMNIST experiments. In Fig. 4c, we see fair agreement (quantified by Fleiss’
kappa in 0.21–0.4) among humans as well as a similar level of agreement
between our model and each human. This indicates that our model per-
forms not just at an accuracy level near humans, but also has fair agreement
with humans on the mistakes it makes.

Notably, unlike computational models, human participants in this
experiment are not really in the only-one-shot setting. Unlike babies faced
with thedoodles for thefirst time, participantsmighthaveunconsciously (or
inevitably) used extra knowledge even though theywere instructed to trynot
to. For example, when a subject looked at the last test image in Fig. 4a, (s)he
might have first inferred that “this is a crab or spider” and then attempted to
find a “crab or spider” among the training images. Knowledge of concepts
like that of “a spider” puts experienced humans at an advantage in this
experiment.

Beyond classification, our distortable canvas enables k-means-style
clustering in a general-appearance similarity space that is non-Euclidean
and human-intuitive. As in k-means, we try different values of k, and for
each k, we trymultiple randomstarts and record the bestwithin-cluster sum
of distances (WCSD). We use the elbow method to pick good k-values.
Figure 5a shows the WCSD-versus-k curve obtained by running our clus-
tering method on a set of 16 images of “7”s from MNIST. The curve indi-
cates k = 2 or 3 as a potential elbow point. The resulting two clusters of “7”s
agree with human intuition regarding two general ways of writing “7”,
depending on whether there is an extra stroke. The resulting three clusters
further divide the cluster of “simpler 7s” based on the angle of the transverse
stroke. Figure 5b shows four clusters of giraffe doodles and their centroids
learned from the first 16 giraffes in Google’s QuickDraw. We see a clear
separation of outline sketches, focused views of the neck, and two different
pose orientations.

Compared to Euclidean k-means and DBSCAN (Fig. 5c), our model
yields clusters that are more intuitive to humans. More importantly, stan-
dard clustering algorithms are not well-suited for archetype generation, e.g.,
DBSCAN lacks a built-in notion of centroids, while k-means computes

centroids by averaging raw images—essentially just overlaying images
within a cluster. In contrast, both examples in Fig. 5 show that the cluster
centroids learned from our model can be effectively viewed as archetypes of
the input images (e.g., different ways of writing “7” or doodling a giraffe).
These human-intuitive archetype generations demonstrate our model’s
ability in effective visual abstractions (a strong contender in Pictionary) and
further imply their value in education.

Discussion
This paper designs a white-boxmodel to learn from few and only those few
examples—in particular one andonlyone example—requiringno extradata
for pretraining. Based on nativism, our distortable canvas effectivelymodels
human intuitionabout general appearance and learns transformation-based
similarity akin to how humans naturally “distort” objects for comparison.
This notion of similarity is formalized in our proposed optimization pro-
blem,whichminimizes canvas and color distortions to transformoneobject
into another with minimal distortion. To remedy vanishing gradients and
solve the optimization efficiently, we mimic human abstraction ability by
chaining anchor lattices and image blurs into a solutionpath. This yields our
AMGDmethod capable of optimizing at multiple levels of abstraction. Our
model outputs not only transformations but also transformation flows that
mimic efficient human thought processes. We demonstrate success in
benchmarks focused on abstract visual tasks such as character and doodle
recognition. By simply using 1-NN,we achieve state-of-the-art results in the
only-few-shot regime on MNIST/EMNIST and achieve near-human per-
formance in Omniglot and QuickDraw only-one-shot learning. Ourmodel
also enables k-means-style clustering to capture human-level visual
abstractions in human-intuitive archetype generations.

This paper represents afirst step towards a general framework aimed at
both learning and performing like humans across diverse applications.
Although our distortable canvas can mathematically represent arbitrary
images, its current learning efficacy remains limited in several key respects.
Wediscuss twomajor limitations—(1) restriction to abstract images and (2)
bias toward nearest neighbors—each of which is elaborated on in the
paragraphs below, along with potential directions for generalization.

Regarding the first limitation, consider two general types of images:
abstract images (like those of symbols and doodles) and real-world images
(like those in CIFAR10/10036). This paper focuses on the former type. To
handle real-world images in the future, it may be more efficient to first
model cognitive simplification and then apply our current distortionmodel.
Humans have remarkable visual abstraction ability to classify real-world
images by first converting them into abstract icons or e (picture)+moji

Fig. 5 | Archetype generation through k-means-
style clustering in our learned general-appearance
similarity space. a shows archetypes of “7”s, cor-
responding to common human writing styles.
b shows archetypes of giraffe doodles, reflecting
major drawing styles in the dataset. c shows com-
parisons to Euclidean k-means andDBSCAN,which
fail to generate reasonable archetypes.
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(character)s (e.g., the emoji of a face, the outline of amountain, the shapeof a
lake) and then comparing these simplifications37. Notably, the structure of
objects found in natural scenes often match that of letters and symbols
throughout human history38. Following this, an efficient way to apply our
method to real-world images is to follow this pipeline—preprocessing them
first into “emojis” and then comparing “emojis”with distortion. Stylized or
abstract images, such as giraffe doodles and hieroglyphics, are those that can
be treated as “emojis” already. There are baselines to attemptfirst, e.g., smart
edge detectors39, but the human visual system does more than edge detec-
tion. In futurework,weaim for a complete theoryof iconor “emoji” creation
mimicking human capacity in order to deal with real-world images, 3D
objects, and more.

Regarding the second limitation, the nearest-neighbor method is
known to be biased towards its chosen neighbors and hence sensitive to
noise, errors, outliers, and ambiguities in the training data. Accordingly,
although our model demonstrates dominant classification performance in
the tiny-data regime of the presented benchmarks, its dominance dimin-
ishes when training size increases. This suggests thinking beyond k-NN.
One future direction is to jointly design our distortable canvasmodel with a
new, human-like classifier that introduces human-style learning into the
classification process. The goal is to achieve state-of-the-art results across all
training sizes, which is not merely about swapping existing classifiers in
and out.

Exploring multimodal problems such as visual question answering
(including from recognizing text in images) is also an important future
direction40.

In order to create data- and energy-efficientML prepared to face novel
challenges that necessarily involve data-sparsity like growing children,
artificial general intelligence (AGI) must replace experience with reason.
Inspired by this goal,AGI cannot simply rely onblack-boxmodels, butmust
maintain interpretability by thinking in the human way, where we learn
functions from small training sets to drive cognitive simulations of simi-
larity. Figure 6 summarizes the pipeline for generalizing our current dis-
tortable canvas model to more general similarity simulations that reveal
more insights about human-level visual abstractions. These insights can in
turn advance our understanding about various aspects of human cognition
and facilitate learning and communication41.

Methods
We introduce a distortable canvas model, where any image can be thought
of as smoothly painted on an elastic (rubber-like) canvas that can be flexibly
bent, stretched, and deformed—just like how we naturally “distort” an
image in our minds.

Formally, we define a smooth image by a piecewise differentiable
M : R2 ! Rþ, where R

2 denotes an infinite canvas and Rþ denotes
color (grayscale in this paper). We define a canvas transformation by
α : R2 ! R2, which reshapes the underlying canvas of a smooth image.
We also define a color transformationby χ : Rþ ! Rþ, which repaints the
color of a smooth image.We simplify color transformation andonly use it to
adjust image contrast via affine χ(c) := ac+ b. In contrast, we do not restrict
canvas transformation to any pre-specified types such as translation, rota-
tion, or scaling, but instead allow all possible transformations. Given
M; α; χ, the composition χ �M � α denotes the transformed image ofM
by transformations α, χ.

To mimic human intuition about general-appearance similarity, we
introduce canvas distortion DV ðαÞ for any canvas transformation α and
color distortionDCðM;M0Þ between twosmooth imagesM;M0.Our idea
is to search for a transformation that mimics what humans naturally do to
transform one image into another. That is, a low-distorted α which makes
little difference in color between M and the transformed M0. More pre-
cisely, we want to minimize both DV ðαÞ and DCðM; χ �M0 � αÞ. This
yields two dual variants of our desired general-appearance distance:
• DC-distance: minimizes the color distortionDC while controlling the

canvas distortion DV
• DV -distance:minimizes the canvas distortionDV while controlling the

color distortion DC .

We detail the implementation of our distortable canvas model as a
computational framework below.

Digital and smoothed images
Anm×ndigital image is a discreteM : ½m�× ½n� ! ½0; 1�, where [k] := {0, 1,
…, k− 1} for any k 2 Z.We call [m] × [n] the canvas grid and any z∈ [m] ×
[n] a grid point. For anym× n digital imageM, we smooth it toM via a sum
of kernels:

MðxÞ :¼
X

z2½m�× ½n�
MðzÞ � κðρðz; xÞÞ for any x 2 R2; ð1Þ

where a kernel κ : Rþ ! Rþ is a decaying function (e.g., linear, poly-
nomial, Gaussian decay) and ρ is a metric on R2 (e.g., ℓ1, ℓ2, ℓ∞). In this
paper,weuse lineardecay and ℓ∞, i.e.,κðρðz; xÞÞ ¼ 1� 1

ρc
k z � xk1 if∥z−

x∥∞< ρc (for somecutoff radiusρc>0) andκ(ρ(z, x)) = 0otherwise.Note:M
is defined everywhere onR2. This differs from Gaussian blurring as we do
not discretize kernels. It is key to use the smoothed image as input, which
allows computing gradients analytically. As such, we always smooth any
digital image first and then only manipulate the smoothed image.

Arbitrary canvas transformations
We consider all 2D transformations (including those without a formula),
but how do we represent them in a computer?With respect to the standard
grid [m] × [n], we use the transformed grid α([m] × [n]) to represent α
digitally. Thus, any canvas transformation α is digitally represented by (¼d ) a
matrix α 2 RðmnÞ × 2 whose ith row is the 2D coordinate of the transformed
ith grid point. We use the lexicographical order of a 2D grid, e.-
g., with respect to [2] × [3], the identify transformation
id¼d id ¼ ½½0; 0�; ½0; 1�; ½0; 2�; ½1; 0�; ½1; 1�; ½1; 2��. Any transformed image
M � α¼d MðαÞ :¼ ðMðα0Þ; . . . ; Mðαðmn�1ÞÞÞ 2 RðmnÞ, i.e., a (vector-
ized) digital image sampled fromM at the transformed grid α.

Color and canvas distortions
The color distortion DC measures the color discrepancy between MðidÞ
andM0ðαÞ up to an affine color transformation χ. The canvas distortionDV
measures the distortion between the original grid id and the transformed
grid α. Formally,

DCðM; χ �M0 � αÞ¼d DCðMðidÞ; χðM0ðαÞÞÞ :¼k aM0ðαÞ þ b�MðidÞk22; ð2Þ

Fig. 6 |Generalization to real-world images requires two key future directions (highlighted in the blue boxes): developing an “emoji” generation algorithm to preprocess real-
world images into their abstract counterparts, and integrating classifiers beyond k-NN to improve robustness against noise.
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DV ðαÞ¼d DV ðid; αÞ :¼ max
ffi;jg;fi0 ;j0 gg2BE

∣Δα
fi;jg � Δα

fi0 ;j0 g∣;

where Δα
fi;jg :¼ log

kαi�αjk2
kidi�idjk2 :

ð3Þ

Here, BE comprises all pairs of neighboring edges in a canvas lattice
(introduced below). Eq. (3) is derived from the mathematical definition of
distortion of a function by discretizing it across the canvas lattice. This
formula measures how far an arbitrary transformation is from being con-
formal, which is flexible for local isometries and scaling. Given a canvas grid
[m] × [n], its corresponding canvas lattice is an undirected graph L= (V, E),
with the set of vertices V = [m] × [n] and the set of edges obtained by
connecting neighboring vertices in the ℓ∞ sense: E = {{i, j}∣∥vi − vj∥∞ =
1for vi, vj ∈ V}. We say two edges are neighbors if they form a 45∘ angle
(Fig. 7).

General-appearance distance via distortion minimization
Tominimize color and canvas distortions (2) and (3), we consider two dual
views: minimizing DC among low-distorted αs or minimizing DV among
best-matching αs. We write the two views as the following two constrained
optimization problems, together with their respective unconstrained
equivalents: with ϵ→ 0+ and μ→ 0+,

min :
α;χ

DCðM; χ �M0 � αÞ s:t: DV ðαÞ≤ ϵ () min :
α;χ

DV ðαÞ þ μDCðM; χ �M0 � αÞ;

ð4Þ

min :
α;χ

DV ðαÞ s:t: DCðM; χ �M0 � αÞ≤ ϵ () min :
α;χ

DCðM; χ �M0 � αÞ þ μDVðαÞ:

ð5Þ

We let the optima D?
C for (4) and D?

V for (5) denote two versions of our
general-appearance distance that mimics human innate intuition. We call
themDC-distance and DV -distance, respectively.

Transformation flow
Besides thefinaloptimal solution,we apply theminimal-distortionprinciple
throughout the entire optimization process42, i.e., we aim to keep canvas/
color distortions small at every optimization step. Gradient descent (or
projected gradient descent for constrained minimization) naturally fits this
goal, since it always follows the steepest descent direction. The iterative
gradient steps not only give us an optimal transformationα⋆ as an end result
but also a transformation flow id = α(0) → α(1) → ⋯ → α⋆. The resulting
sequence of transformed imagesM0 ¼M0 � αð0Þ !M0 � αð1Þ ! � � � !
M0 � α? �M (we omit χ for simplicity) makes up an animation (Fig. 1),
which simulates human intuition on smoothly transformingM0 toM. For
example, our mind does not treat translations as sudden jumps from one
location to another, but instead tends to auto-complete a translation path
that is continuous and desirably short.

In summary, our model outputs the optimal transformation α⋆, its
associated distanceD?

C orD?
V , and the corresponding transformation flow

α(0) → ⋯ → α⋆ leading to the optimal solution. This achieves our goal of
making both the transformation and the transformation process human-
like and interpretable, thus rendering the entire model white-box.

However, ordinary (projected) gradient descent on (4) or (5) has a
problem: the curse of localminima.Our solution is to lift gradient descent to

multiple levels of abstraction via multiscale canvas lattices and color blur-
ring,mimickinghumanabstraction capabilities that are extremelyflexible in
multiscale optimization. We name this technique the abstracted multi-level
gradient descent (AMGD), controlled by an anchor-grid system Ĝ and a
blurringparameterρc. AMGDoutputs a ðĜ; ρcÞ-solutionpath that forms the
backbone of a desired transformation flow.We detail AMGD in the sequal.

The canvas distortion DV is invariant under a variety of transforma-
tions (e.g.,DV ðαÞ ¼ 0 for any conformal α), which nicely mimics humans’
flexible transformation options. But this also implies numerous local/global
minima and other critical points where the gradient is 0. How much the
color distortion DC fluctuates as a function of α depends on the images
M;M0. But in most cases, DC also has many local/global minima, the
majority of which represent unwanted “short cuts”—unnatural transfor-
mations that make DC ! 0 but would break the rubber canvas or create
holes in it. The curse of vanishing gradients can freeze gradient descent. To
unfreeze it, we lift gradient descent to higher levels, once again mimicking
humans’ abstraction power, as our internal optimization system is quite
flexible in pursuing “gradient-descent” moves at multiple levels of
abstraction.Wedesign two abstraction techniques: a chainof anchor lattices
to make hierarchical abstractions of canvas transformations and a chain of
color blurring to make hierarchical abstractions of image painting.

Anchor grids and lattices
An anchor grid and its corresponding anchor lattice offer a simpler para-
meterization (i.e., an abstraction) of canvas transformations. Without such
an abstraction, any transformed [m] × [n] gridα 2 RðmnÞ× 2 consists of 2mn
free parameters. So, the optimization problems (4) and (5) are 2mn + 2
dimensional, which is not only computationally inefficient for large images
but also has too much room for vanishing gradient. We use a simpler α-
parameterization that regularizes transformation, lowers distortion, and
agrees with our intuition on rubber transformations.

Formally, an anchor system ðG; ĜÞ ¼ ðM ×N; M̂ × N̂Þ uses two layers
of grids: an underlying grid G and an anchor grid Ĝ atop, satisfying
M̂ � M; N̂ � N , and G � ConvexHullðĜÞ. Figure 8a shows one example,
where G = [5] × [6] = {0, …, 4} × {0, …, 5} and Ĝ ¼ f0; 2; 4g× f0; 2; 5g.
Under an anchor system,we can uniquely represent any grid point g∈G via
four anchors Ag ;Bg ;Cg ;Dg 2 Ĝ via proportional interpolation, or more
precisely, the following double convex combination

g ¼ ð1� λg Þð1� νg ÞAg þ ð1� λg ÞνgBg þ λg ð1� νg ÞCg þ λgνgDg :

ð6Þ
Here, AgBgDgCg can be uniquely selected as the smallest rectangle in Ĝ’s
lattice containing g; the twoweight parameters λg, νg are computed based on
relative position, e.g., as in Fig. 8a. The relation between grid points and
anchors can be summarized by a weight matrixW 2 RjGj× jĜj. Its ith row
stores weights for the ith grid point (say g in (6)) and contains at most four
non-zero entries (i.e., coefficients in (6)) located at the columns
corresponding to Ag, Bg, Cg, Dg, respectively.

Given an anchor system ðG; ĜÞ, any canvas transformation α¼d α 2
RjGj× 2 under G and ¼d α̂ 2 RjĜj× 2 under Ĝ. α̂ is a submatrix of α, which
induces an equivalence relation on the set of all canvas transformations: α, β
are equivalent iff α̂ ¼ β̂, and α̂ abstracts the equivalence class fβjβ̂ ¼ α̂g.
Based on the maximum entropy principle43, a reasonable selection of a

Fig. 7 | Illustration of a canvas grid and its corre-
sponding lattice. Local distortions caused by a
transformation α are computed at each pair of neigh-
boring edges; one such pair is highlighted in red.
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representative of this equivalence class isWα̂, becauseWα̂ 2 fβjβ̂ ¼ α̂g and
evenlydistributes the transformedgridpoints. Figure8b illustrates this typeof
evendistribution,whichagreeswithhuman intuitiononhowarubber surface
would naturally react when transforming forces are applied at anchors.

Using ananchor system inoptimizationproblems (4) and (5) adds very
little to computing distortions and gradients: we reuse the computationwith
α ¼Wα̂ and perform only one additional chain-rule step ∂α=∂α̂ ¼W. By
doing so, however, the number of optimization variables in (4) or (5)
reduces from ∣G∣ + 2 to jĜj þ 2 (e.g., if G = [28] × [28] and
Ĝ ¼ f0; 27g× f0; 27g, the number reduces from 1570 to 10). It is important
to note that using a simpler anchor grid is not the same as downsampling. If
it were, one would plug in α α̂, but we plug in α Wα̂. In our case,
image colors are still sampled from the underlying grid rather than down-
sampled from the anchor grid. So, using our anchor system is not infor-
mation lossy while still benefiting from reduced optimization size. Running
gradient descent (w.r.t. anchors) in abstracted optimization spaces effec-
tively bypasses critical points.

Blurring
Another view to lifting gradient descent to a high-level, abstracted optimi-
zation space, is to blur the image. Intuitively, blurring ignores low-level
fluctuation, similar to how humans naturally abstract an image. Blurring
helps remedy vanishing gradients and is done in our image smoothing
process. The cutoff radius ρc in κ in (1) controls the blurring extent: larger ρc
means more blurred.

Algorithm1.Traverse the anchor-lattice chain and the blurring chain in
a solution path.

Abstracted multi-level gradient descent
Mixing the two abstraction techniques yields our AMGD technique pro-
ceeding from higher- to lower-level abstractions. Given an anchor grid Ĝ
and a cutoff radius ρc, we denote the corresponding (4) and (5) byDCðĜ; ρcÞ
andDVðĜ; ρcÞ, respectively. For either, we solve for a ðĜ; ρcÞ-solution path,
fromcoarser Ĝ and largerρc tofiner Ĝ and smallerρc. Let Ĝk be ak× k evenly
distributed anchor grid and L̂k be its corresponding lattice. Figure 8c shows a
chain of anchor lattices L ¼ fL̂3iþ1gi¼0;1;2;... and a chain of cutoff radii
R ¼ fηjρc0 gj¼0;1;2;.... The pseudocode in Algorithm 1 shows an example of
traversing the two chains in a solution path. The procedure starts from the
coarsest lattice and traverses the blurring chain first (from the most blurred
to the least blurred image) and then, with the clearest image fixed, traverse
the lattice chain (from coarsest to finest). It is easy initially to align two
blurred blobs via small canvas adjustments, implying a small number of
iterations to converge toDC � DV � 0. As we proceed along the solution
path, the images restoremoredetail but thefiner L̂k helpsmanage that detail.
In a solution path, an earlier solution is used to warm start the subsequent
solve step, which further alleviates the curse of vanishing gradients.Notably,
even the starting L̂2 comprising only four corner anchors parameterizes a
large family of transformations containing all affine transformations. Finer
anchor grids/lattices express more flexible transformations (including local,
global, piecewise affine, and more), approaching human-level flexibility.

Interpretability makes our model configuration intuitive, avoiding the
black art of hyperparameter tuning in many MLmethods. Consider a 28 ×
28 image as an example. Both the anchor lattice list and the cutoff radius list
can be set as geometric sequences, with their granularity flexibly controlled
by the sequence length. For the anchor lattices, we start from the smallest
possible grid, i.e., 2 × 2, and gradually refine it to the full grid 28 × 28. The
cutoff radii can be configured intuitively because they have a physical

Fig. 8 | Core AMGD components. a anchor system, b its transformation, and c a configuration of ðĜ; ρcÞ-solution path consisting of a chain of anchor grids/lattices and a
chain of blurring.
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meaning, e.g., a radius of 4 defines the extent of blurring, where each pixel
blurs into a 4-pixel radius neighborhood, forming a 9×9blob, or superpixel.
This represents considerable blurring for a 28 × 28 image, which is easy to
visualize. The stopping criterion for gradient descent can be controlled by
the color distortion threshold ϵ, which has a physical meaning too, e.g., a
distortion of 1 can correspond to flipping a pixel from black (0) towhite (1).
Thus, setting ϵ= 5 represents a small color-distortion tolerance for a 28× 28
grayscale image.

The number of parameters in our model scales linearly with the size of
the input image, implying linearmemory requirements.Asacomparison,ViT
scales linearly with number of tokens, which itself depends not only on image
size but also patch size and architecture details such as embedding dimension
and number of layers. Our runtime depends on the number of gradient-
descent steps,which is small for visually similar images and large fordissimilar
ones. For the twoexamples inFig. 1c, transforming “1” to “7” to compute their
distance took 65 gradient-descent steps and 235 ms on a MacBook Pro (M1
Max), whereas transforming “6” to “7” took 196 steps and 452 ms.

We next detail k-means-style clustering in our general-appearance
similarity space. As in other non-Euclidean metric learning settings44, it is
unrealistic to run k-means on explicitly computed distances. Learning a
distance in our model requires solving an optimization problem, which is
much more expensive than computing Euclidean distances. Further, com-
puting a centroid in a non-Euclidean space requires solving another opti-
mization problem (minimizing the sum of within-cluster distances), which
ismuchmore expensive than an arithmeticmean.What ismore challenging
is that the twooptimizations arenested, yielding anoptimizationproblemof
optimization problems.

To address these challenges, we generalize our idea of a transformation
flow between two images into multi-flows among multiple images. Under
this generalization, we do not explicitly compute pairwise distances,
meaning we do not solve the inner optimizations first. Instead, we solve the
inner and outer optimizations at the same time, where we flatten the nested
optimizations into a single one.

More specifically, to group N smooth images M1; . . . ;MN into K
clusters, we solve the following optimization problem:

minimize
α1; . . . ; αN
α1; . . . ; αK
C1; . . . ;CK

XK

k¼1

X

i2Ck

DCðMk � αk; Mi � αiÞ subject to
XN

i¼1
DV ðαiÞ≤ ϵ;

ð7Þ

where Ck denotes the kth cluster, Mk � αk denotes the kth centroid, and
Mi � αi denotes the ith transformed image flowing to its corresponding
centroid together with all other N− 1 transformed images. One can check
that (7) is an extensionof (4)whereweomitted χ for simplicity. Solving (7) is
similar to k-means via alternating refinement:
• the assignment step assigns each transformed image Mi � αi to Ck?

according to

k? ¼ argmin
k¼1;...;K

DCðMk � αk; Mi � αiÞ;

• the update step solves (7) for one gradient-descent step given the Cks.

Upon convergence, we obtain C?
1; . . . ;C

?
K as clusters and M1 �

α1; . . . ;MK � αK as centroids.

Data Availability
The datasets analyzed in this study are publicly available from the following
sources: MNIST (http://yann.lecun.com/exdb/mnist), EMNIST-Letters
(https://www.nist.gov/itl/products-and-services/emnist-dataset), Omniglot

(https://github.com/brendenlake/omniglot), and QuickDraw (https://
github.com/googlecreativelab/quickdraw-dataset).
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