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Abstract

Large language models are now routinely used in high-stakes applications where
hallucinations can cause serious harm, such as medical consultations or legal advice.
Existing hallucination detection methods, however, are impractical for real-world
use, as they are either limited to short factual queries or require costly external
verification. We present a cheap, scalable method for real-time identification of hal-
lucinated tokens in long-form generations, and scale it effectively to 70B parameter
models. Our approach targets entity-level hallucinations—e.g., fabricated names,
dates, citations—rather than claim-level, thereby naturally mapping to token-level
labels and enabling streaming detection. We develop an annotation methodology
that leverages web search to annotate model responses with grounded labels indicat-
ing which tokens correspond to fabricated entities. This dataset enables us to train
effective hallucination classifiers with simple and efficient methods such as linear
probes. Evaluating across four model families, our classifiers consistently outper-
form baselines on long-form responses, including more expensive methods such
as semantic entropy (e.g., AUC 0.90 vs 0.71 for Llama-3.3-70B), and are also an
improvement in short-form question-answering settings. Moreover, despite being
trained only with entity-level labels, our probes effectively detect incorrect answers
in mathematical reasoning tasks, indicating generalization beyond entities. While
our annotation methodology is expensive, we find that annotated responses from
one model can be used to train effective classifiers on other models; accordingly,
we publicly release our datasets to facilitate reuse. Overall, our work suggests a
promising new approach for scalable, real-world hallucination detection.
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Figure 1: Token-level probes detect hallucinated entities. In long-form generation settings (Long-
Fact, HealthBench), linear probes far outperform uncertainty-based baselines, with LoRA probes
improving performance even further. Our probes also perform well in short-form settings (TriviaQA),
and out-of-distribution reasoning domains (MATH). Results for Llama-3.3-70B are displayed.
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USER

What was the factual background in Riley v. California (2014)?

LLAMA-3.1-8B

Riley v. California, 573 U.S. 373 (2014), was a landmark United

States Supreme Court case that addressed the issue of warrantless

searches of mobile devices. Here’s the factual background:

Case Background:

David Leon Riley, a 29-year-old man from San Diego, California, was

arrested on April 18, 2010, in connection with a shooting incident

that occurred on April 13, 2010. Riley was suspected of being

involved in the shooting, which resulted in the death of a 21-year

-old man named Jonathan M. Madero.

Arrest and Search:

Riley was arrested by the San Diego Police Department (SDPD) at

approximately 10:30 p.m. on April 18, 2010, at his residence

in San Diego. During the arrest, the police officers seized Riley’s

mobile phone, a BlackBerry Curve 8330, which contained various data,

including text messages, emails, and photographs.

Confirmed as the
correct Supreme Court
citation

Confirmed as the
petitioner in Riley v.
California case

Confirmed as the
location where Riley
was arrested and the
shooting occurred

The shooting occurred
on August 2, 2009,
not April 13, 2010

Sources consistently
refer to the shooting
victim as ‘Mr. Web-
ster’ or ‘Webster’, not
Jonathan M. Madero

Sources mention Ri-
ley had a cell phone
but do not specify the
exact model as Black-
Berry Curve 8330

Figure 2: An annotated example of hallucination detection in long-form legal text. The underlines
indicate entity spans labeled by our annotation pipeline: green denotes entities labeled as supported,
while red denotes entities labeled as hallucinated. Hallucination detection probe scores for each token
are shown as yellow highlights, with the intensity reflecting the score’s magnitude (scores below 0.4
are not shown). Note that while the annotation pipeline predominantly identifies and labels entities
(e.g., “Jonathan M. Madero”, “BlackBerry Curve 8330”), this example illustrates the difficulty in
cleanly separating entities from non-entities in long-form text. We notice that both our annotation
pipeline and our resulting probes sometimes detect broader hallucinations, such as claims, even if
they don’t correspond cleanly to an entity (e.g., “at his residence in San Diego,” which is indeed a
fabricated detail).

1 Introduction

Large language models (LLMs) have seen rapid adoption in high-stakes fields such as medicine [Ayo-
Ajibola et al., 2024, Henry, 2025] and law [Braff, 2025, Thomson Reuters Institute, 2025], where the
reliability of model outputs is critical. A key limitation of LLMs, however, is hallucinations—the
generation of content that is plausible-sounding but factually incorrect [Huang et al., 2025, Ji et al.,
2023]. In these high-stakes settings, even minor errors can have serious consequences, underscoring
the need for robust hallucination detection methods.

Several recent works have addressed hallucination detection in short-form question-answering (QA)
settings [Kuhn et al., 2023, Farquhar et al., 2024, Kossen et al., 2024]. In these settings, completions
are generally brief (1–2 sentences), contain a single atomic claim, and correctness can be unam-
biguously labeled. However, real-world LLM usage increasingly involves open-ended long-form
generation (e.g., multi-turn medical consultations, or legal case analyses), where models produce
complex, multi-paragraph responses containing numerous interconnected claims. Hallucination
detection in long-form generation presents fundamentally different challenges: it no longer suffices to
label entire responses as correct or incorrect; instead, systems must identify which specific segments
are hallucinated in responses where correct and incorrect claims are intertwined.

Existing approaches for long-form hallucination detection, such as SAFE [Wei et al., 2024b] and
FactScore [Min et al., 2023], use expensive multi-step pipelines that extract atomic claims, retrieve
external evidence, and verify each claim. The resulting cost and latency make these methods
impractical for real-time monitoring during generation. This reveals a critical gap: the lack of
streaming classifiers capable of flagging hallucinated content as it is produced, without requiring
auxiliary verification models or external knowledge retrieval.
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To address this gap, we introduce a token-level hallucination detection approach that frames the
problem as a token-labeling task rather than post-generation verification. Importantly, we focus on
entity-level hallucinations (e.g., fabricated names, dates, citations) rather than claim-level. Entities
have clear token boundaries and can be verified in real-time as they appear, whereas claims require
post-hoc extraction that breaks token alignment and forces systems to wait for complete sentences.
This design choice enables streaming detection while effectively capturing factual errors, as incorrect
claims typically contain fabricated or misused entities.

The key to our approach is a data annotation technique that uses a frontier LLM augmented with
web search to extract entities from model outputs and label them as factually supported or fabricated.
Each token is assigned the label of its containing entity, enabling us to train lightweight linear probes
that predict these labels from hidden activations. The probes run in the same forward pass and flag
unsupported entities as tokens are produced with negligible computational overhead. In long-form
settings, linear probes substantially outperform uncertainty-based baselines at detecting hallucinated
entities, achieving 0.87 AUC on Llama-3.3-70B, compared to 0.71 AUC using a version of semantic
entropy adapted to long-form generation.

We study generalization across generation settings and model families. Training probes on long-form
text transfers well to short-form QA, but short-form training fails to recover long-form performance,
suggesting that long-form supervision is necessary for effective monitoring. Additionally, we find that
probes trained on one model can reliably detect hallucinations in other models’ outputs, suggesting
they capture fundamental patterns of hallucinations rather than model-specific signals.

For enhanced performance, we show that adding low-rank adapters (LoRA) during training further
improves detection accuracy (0.90 AUC on Llama-3.3-70B). To maintain streaming capabilities,
we employ KL regularization to balance probe performance with minimal model behavior changes.
Finally, as a proof-of-concept, we demonstrate how our streaming detection approach enables real-
time intervention, allowing systems to abstain from responding when hallucination risk is detected,
thereby improving factual reliability.

While further work is still needed for robust practical deployment, our streaming token-level detection
approach suggests a concrete path toward real-time hallucination monitoring at scale.

2 Related work

The problem of hallucination detection in LLMs has inspired a range of techniques. In this section,
we summarize key approaches, including probing classifiers, uncertainty-based metrics, and methods
based on verification through external sources.

Internal representation-based methods. A growing body of work leverages models’ internal
states to detect hallucinations. Probing classifiers [Alain and Bengio, 2017] map intermediate
model representations to target properties and have been extensively used for hallucination detection.
Marks and Tegmark [2024] train linear probes to uncover truth-related directions in representation
space. Recent studies [Orgad et al., 2025, Ji et al., 2024, Alnuhait et al., 2025] show that linear
and MLP-based probes can predict hallucinations using hidden states before or during generation,
often achieving strong AUC scores across various tasks. However, their ability to generalize to more
complex settings, such as open-ended long-form generation, remains unproven.

CH-Wang et al. [2024] train span-level probes to detect hallucinations during generation on grounded
tasks (e.g., document summarization). Like our approach, they develop streaming token-level
classifiers for real-time detection. However, they focus on detecting content that is inconsistent with
the provided input context (e.g., a source document), whereas our approach detects factually incorrect
entities against world knowledge more broadly.

Recent work in mechanistic interpretability [Ferrando et al., 2025, Lindsey et al., 2025] has discovered
the existence of “features,” or linear directions in activation space, that correspond to whether a model
knows an entity or not, and that these features are causally relevant in determining whether the model
attempts to answer a query or abstains.

Uncertainty-based detection. Hallucinations in language models can be analyzed through the lens
of uncertainty estimation. The uncertainty of model predictions across an entire sequence can be
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Token-level annotated dataset

Paul Lawrence Modrich is an American biochemist
who is best known for his research on DNA
mismatch repair, a fundamental cellular mechanism
that corrects errors that occur during DNA
replication.

Early Life and Education:
Born:  June 1946  in the Philadelphia, Pennsylvania
area.

Education:
B.S. in Chemistry from the California Institute of
Technology (Caltech) in 1968.
Ph.D. in Chemistry  from the Massachusetts
Institute of Technology (MIT) in 1973 under the
supervision of Professor  Samuel A. Reed.

Long-form
generations

Paul Lawrence Modrich is an American

biochemist who is best known for his

research on DNA mismatch repair, a

fundamental cellular mechanism that
corrects errors that occur during DNA

replication...

Figure 3: Token-level annotation pipeline. We construct LongFact++, a large set of prompts
spanning diverse domains to elicit entity-dense generations. The target LLM (e.g., Llama) produces
long-form completions containing both factual and hallucinated content. A frontier LLM with web
search (e.g., Claude) then identifies entities within each generation, verifies them against external
sources, and produces labels indicating which entities are supported and which are not. The result is
a dataset in which every token is annotated to indicate whether it forms part of a hallucination.

quantified using the joint probability of generated tokens. To account for varying sequence lengths,
previous work [Fomicheva et al., 2020, Guerreiro et al., 2023] has considered the length-normalized
generation log probability of a model’s response as an approximate measure of its uncertainty.

While many machine learning tasks involve distinct, mutually exclusive output classes (e.g., digit
classification), open-ended text generation is more complex, as multiple distinct output sequences
can convey essentially the same meaning. Addressing this issue, Kuhn et al. [2023], Farquhar et al.
[2024] introduce semantic entropy: given a query, semantic entropy groups semantically equivalent
answers into clusters, and quantifies how spread out the model’s probability distribution is across
these clusters. High semantic entropy indicates uncertainty about which meaning to convey, signaling
higher risk of hallucination. While powerful, estimating semantic entropy with sampling-based
methods is computationally intensive. To address this, Kossen et al. [2024] propose semantic entropy
probes (SEPs)—lightweight classifiers trained to predict semantic entropy from hidden states alone,
achieving competitive but lower classification performance compared to the sampling-based variant.

External verification methods. Methods such as SAFE [Wei et al., 2024b], FactScore [Min
et al., 2023], and FacTool [Chern et al., 2023] represent a prominent approach that employs external
verification for long-form hallucination detection. These methods work by first extracting claims from
the generated text, then retrieving supporting evidence from external sources, and finally evaluating
each claim in light of the external evidence. While effective for comprehensive verification, these
pipelines incur significant computational costs and latency, making them unsuitable for real-time
detection during generation. For example, a single sentence may fan out into tens of claims, each of
which requires multiple search queries and LLM API calls to verify.

3 Methodology

3.1 Dataset construction for token-level hallucination detection

To train token-level hallucination detectors, we need a dataset with precise annotations of hallucinated
content within long-form outputs. This requires two steps: (1) generating diverse completions that
contain both hallucinated and factual content, and (2) obtaining accurate token-level annotations that
identify which specific tokens correspond to hallucinated entities. An overview of the annotation
pipeline is portrayed in Figure 3.

Data generation. We build upon the LongFact dataset [Wei et al., 2024b], composed of 2,280
fact-seeking prompts, and introduce LongFact++, which expands LongFact with 10 times more
prompts across more diverse domains and query structures. LongFact++ incorporates four categories
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of prompts: topic-focused queries (e.g., queries related to the topic of “molecular mechanisms of
viral DNA replication”), biographical queries about famous individuals, citation-focused prompts
that encourage generation of references, and legal prompts based on landmark court cases. More
details of dataset construction are provided in Appendix C.

For each target model that we study, we use the prompt sets from LongFact and LongFact++ to
generate completions, creating hallucination-rich generations that serve as the source material for
token-level annotation.1

Token-level annotation. Existing verification methods like SAFE [Wei et al., 2024b] decompose
generated text into atomic claims for verification, but this reformulation breaks alignment with
the original token sequence needed for token-level training. Instead, we focus our annotations on
entities—e.g., named people, organizations, locations, dates, and citations—which can be verified
against external sources while preserving exact token boundaries.

For each generated completion, we use Claude 4 Sonnet with web search capabilities [Anthropic,
2025a,b] to extract and annotate specific spans within the original text. The system identifies entity
spans, searches for supporting evidence, and labels each entity as “Supported,” “Not Supported,” or
“Insufficient Information” (see the full prompt in Appendix C.3).2 Figure 2 shows an example of a
labeled completion with entity-level annotations and verification justifications.

Label quality. We audited label quality using several checks (details in Appendix E) and summarize
the two most informative here. We recruited a human annotator to independently label a random
sample of entity spans via web search; the human annotations matched the LLM’s labels in 84%
of cases (n=50). We also constructed a controlled set of hallucinations by paraphrasing Wikipedia
passages and injecting known factual errors, and then ran our annotation pipeline on this controlled
dataset. Across 100 samples, our annotation pipeline correctly detected 729/904 of the injected errors
(80.6% recall), and falsely flagged 15.8% of unchanged entities (i.e., 15.8% false positive rate).

3.2 Training token-level probes

Setup. Given a query q and a chat model M , the model generates tokens
t = (t1, . . . , tn) ∼ M(t | q). Our dataset yields annotations denoting entity spans s = [sstart, send]
(inclusive token indices) with binary labels ys ∈ {0, 1}, where ys=1 indicates a hallucinated span.
The detector’s goal is to assign each token ti inside labeled spans a probability of being part of a
hallucination.

Probe. We denote by Mprobe the hallucination detector attached to M , consisting of a linear value
head and, optionally, LoRA adapters inserted into all layers preceding the head. The value head reads
hidden states from an intermediate layer ℓ of M and outputs token-level probabilities:

pi = σ
(
w⊤h

(ℓ)
i + b

)
, i ∈ s,

where h
(ℓ)
i is the hidden state of token ti at layer ℓ and σ is the logistic sigmoid function. We always

train the value head parameters (w, b); when LoRA adapters are present, we train those as well. We
attach the probe head at layer ℓ = ⌊0.95× num layers⌋ unless otherwise noted.

Objective. The total loss is a convex combination of a probe loss, which trains the hallucination
classifier, and a regularization term, which constrains changes to the underlying language model:

Ltotal = (1− λreg)Lprobe + λreg Lreg, λreg ∈ [0, 1]. (1)

The regularizer Lreg is applied only when training with LoRA; i.e., when the probe is a linear
probe, λreg is always zero, as regularization is not needed. We experiment with two losses for the
regularization term:

1Following Wei et al. [2024b], we append the following postamble to each question in order to prompt the
model to give a long, detailed completion: “Provide as many specific details and examples as possible (such as
names of people, numbers, events, locations, dates, times, etc.).”

2We treat entities labeled as either “Not Supported” or “Insufficient Information” as hallucinated. Spans that
cannot be confidently mapped back to spans in the original completion are discarded.
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• Language modeling loss (LLM): standard next-token prediction loss, or
• KL divergence loss (LKL): KL divergence between the fine-tuned LoRA model and the

frozen original model.

These regularization strategies are evaluated in Section 5.3. By default, most experiments use LM
regularization with λreg=0.01, unless otherwise noted.

Probe loss: token-wise and span-max. We train the probe using binary cross-entropy (BCE) loss
between pi and the label ys of its containing span s. However, annotated spans are often longer than
the actual error; for example, in “born in 2002,” only the final token (“02”) may be incorrect. This
creates two challenges: (1) we do not know in advance which tokens within a hallucinated span
are incorrect, and (2) hallucination signals are typically concentrated at specific “high-information”
tokens [Orgad et al., 2025], not spread uniformly. Optimizing BCE over every token in a span dilutes
this signal and risks teaching the probe to activate broadly rather than precisely.

We address this by combining a token-wise loss over all tokens with a span-max loss over annotated
entity spans [Tillman and Mossing, 2025, Sharma et al., 2025]. Let T be all token positions and S
the set of annotated spans. Define token labels by yi=ys if i is within an entity span s (an “entity
token”), and yi=0 if i is outside any entity span (a “background token”). The probe loss is:

Lprobe = (1− ω)
∑
i∈T

wi BCE(yi, pi) + ω
∑
s∈S

BCE
(
ys,max

i∈s
pi
)
, ω ∈ [0, 1]. (2)

For a positive label ys=1, the max term rewards the probe if at least one token in span s scores high;
for ys=0, it requires all tokens within the span to score low. Following Sharma et al. [2025], we
anneal ω from 0 to 1 during training: early on, the token-wise term provides dense, stable gradients;
later, the span-max term sharpens the probe’s focus on the most informative token in each span (e.g.,
only the final digits of “born in 2002”).

Background tokens greatly outnumber entity tokens, so we up-weight tokens that lie inside any
annotated span: wi=α if i is an entity token, else wi=1; we use α=10 unless otherwise noted. This
weighting prevents the loss from being dominated by easy background negatives.

3.3 Baselines

To contextualize the performance of our probes, we compare against several uncertainty-based
metrics. In particular, we evaluate token-level entropy, token-level perplexity, semantic entropy, and a
black-box self-evaluation method. See Appendix F for additional details.

• Token-level entropy: Uncertainty in the next-token distribution; higher values indicate the
model considered many plausible continuations.

• Token-level perplexity: How “surprised” the model is by its own token choice; higher
values signal lower confidence.

• Semantic entropy: Measures uncertainty over semantic meanings rather than surface forms
via clustering multiple sampled completions [Kuhn et al., 2023, Farquhar et al., 2024]. See
Section 2 for a description, and Appendix F.2 for implementation details.

• Black-box self-evaluation: Prompting the model to judge whether a sentence from its own
output contains a hallucination. Full details and results are provided in Appendix F.3.

4 Long-form hallucination detection

4.1 Experimental setup

Models. We primarily focus our analysis on two models (“primary models”): Llama-3.1-8B-
Instruct and Llama-3.3-70B-Instruct [Grattafiori et al., 2024]. We also replicate key results using
three additional models (“secondary models”): Gemma-2-9B-IT [Riviere et al., 2024], Qwen-2.5-7B-
Instruct [Yang et al., 2025], and Mistral-Small-24B-Instruct-2501 [Mistral AI, 2025].3

3All models studied in this paper are instruction-tuned models. For brevity, model names will henceforth
exclude the “Instruct” or “IT” suffix.
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Table 1: Detection performance on Llama-3.1-8B and Llama-3.3-70B across test sets of LongFact,
HealthBench, TriviaQA, and MATH. We report AUC and recall at 10% false positive rate (R@0.1).
Probes (linear, LoRA) outperform uncertainty-based baselines; LoRA is strongest across all settings.
See Appendix G for evaluation on LongFact++ prompts, and results for secondary models.

Dataset Method Llama-3.1-8B Llama-3.3-70B

AUC (↑) R@0.1 (↑) AUC (↑) R@0.1 (↑)

LongFact
(long-form)

Perplexity 0.7600 0.3616 0.7062 0.3011
Entropy 0.7415 0.2868 0.7118 0.3027
Semantic entropy 0.7189 0.2739 0.7138 0.3915
Linear probe 0.8535 0.5878 0.8667 0.6451
LoRA probe 0.8938 0.6801 0.9048 0.7228

HealthBench
(long-form, held-out)

Perplexity 0.6506 0.2022 0.6446 0.2363
Entropy 0.6650 0.2535 0.6466 0.2377
Semantic entropy 0.6537 0.2411 0.6042 0.2575
Linear probe 0.8560 0.5843 0.8730 0.6479
LoRA probe 0.8960 0.6804 0.9057 0.7116

TriviaQA
(short-form)

Perplexity 0.9021 0.7508 0.8121 0.5048
Entropy 0.9382 0.8628 0.8423 0.5524
Semantic entropy 0.9103 0.7500 0.8104 0.5525
Linear probe 0.9179 0.7649 0.9484 0.8590
LoRA probe 0.9651 0.9062 0.9827 0.9486

MATH
(reasoning, held-out)

Perplexity 0.7143 0.1557 0.7802 0.4299
Entropy 0.7818 0.4481 0.6887 0.3178
Semantic entropy 0.8520 0.5767 0.7930 0.3981
Linear probe 0.8450 0.5739 0.8641 0.6877
LoRA probe 0.8845 0.6913 0.8750 0.6476

Training data. For our primary models, we train on a mixture of long-form and short-form data.4
For each model M , we sample nM

LF long-form prompts from LongFact and LongFact++, and nM
SF

short-form prompts from TriviaQA [Joshi et al., 2017], and then generate one completion per prompt.5
Labels for long-form completions follow the pipeline in Section 3.1. For short-form completions, we
extract and label only the single entity span corresponding to the answer of the trivia question (the
“answer entity span”). For the results in this section, we train probes on our primary models using
labeled generations from all models (primary and secondary), yielding a training corpus of ∼25,000
total samples. For more details on data generation, see Appendix C.2.

Evaluation. Unless otherwise noted, detectors are always evaluated in the same-model setting: each
probe is tested on generations from its own original model. All models share a common long-form test
set of 1,000 LongFact and 1,000 LongFact++ prompts. We also evaluate performance on short-form
completions using TriviaQA [Joshi et al., 2017]. To test generalization, we evaluate on two held-
out datasets: HealthBench [Arora et al., 2025], which contains unseen long-form medical-domain
prompts, and MATH [Hendrycks et al., 2021b], which tests performance on an out-of-distribution
mathematical reasoning task without discrete entities.

Our evaluation measures how well each method classifies individual entities as either supported or
hallucinated. To do this, we assign a score to each entity using the span-max rule, where an entity’s
score is the maximum of any token within its span. In long-form tasks, we score all annotated entities,
while for short-form QA, we score only the single entity corresponding to the answer of the question.
For mathematical reasoning, which lacks entities, we score the entire completion by its maximum

4We find that training on a mix of long-form and short-form data yields the best overall performance; training
only on long-form data also works well (see Section 5.1).

5For Llama-3.1-8B, we use nM
LF=8,000 and nM

SF=2,000; for Llama-3.3-70B, we use nM
LF=8,000 and

nM
SF=1,000. For secondary models (Gemma, Qwen, and Mistral), we use nM

LF=2,000 and nM
SF=0.
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token score. The performance of this classification task is then measured by the area under the
receiver operating characteristic curve (AUC) and recall at a 10% false positive rate (R@0.1). All
specific labeling and scoring protocols are detailed in Appendix D.

4.2 Results

In long-form settings (LongFact and HealthBench), token-level probes markedly outperform baselines
for both primary models (Table 1). Simple linear probes consistently achieve AUCs above 0.85, and
LoRA probes improve even further, pushing AUCs above 0.89. In comparison, the uncertainty-based
baselines all struggle, failing to exceed 0.76 AUC.

In the short-form setting (TriviaQA), the baselines are stronger than in the long-form setting, yet
probes still lead. Our LoRA probes consistently achieve greater than 0.96 AUC, and linear probes
also perform well.

Notably, our probes also achieve strong results on the MATH dataset. This out-of-distribution perfor-
mance suggests our method captures signals of correctness that generalize beyond its original target
of fabricated entities. An annotated example from the MATH dataset is provided in Appendix B.2.

We replicate the long-form results on the three secondary models, training each on only 2,000
annotated samples of its own long-form generations. The results are similar: LoRA probes again
outperform linear probes, with AUCs ranging between 0.87–0.90 on LongFact generations. Full
results for secondary models are displayed in Table 5.

While LoRA probe AUCs approach or exceed 0.9 in several settings, R@0.1 on long-form tops out
around 0.7, i.e., at 10% false positive rate, the detector recovers roughly two-thirds of hallucinated
entities. These results underscore both the practical gains over standard uncertainty-based baselines,
and also the remaining headroom before such methods can be used broadly in high-stakes contexts.

5 Additional experiments

5.1 Generalization between short- and long-form generation settings

500 1K 2K 4K 8K

Number of Training Samples

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Performance on Short-form Test

500 1K 2K 4K 8K

Number of Training Samples

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

Performance on Long-form Test

Trained on Short-form Trained on Long-form

Figure 4: Generalization between short- and long-form generation settings (Llama-3.1-8B; 3
seeds per point; mean ± standard deviation AUC shown). The x-axis refers to the number of training
examples from the regime indicated in the legend. Left: Performance on the short-form (TriviaQA)
test set. Blue: probes trained only on short-form. Red: probes trained only on long-form. Right:
Performance on the long-form (LongFact) test set. Performance gaps between training regimes are
smaller on short-form tests (<0.05 AUC) but much larger on long-form tests (∼0.10 AUC).

Most prior work on hallucination detection focuses on short factoid QA [Orgad et al., 2025, Kossen
et al., 2024, Tillman and Mossing, 2025], where labeling is clean and single-answer verification is
straightforward, whereas our target use-case is long-form, multi-claim generations. We examine
whether token-level hallucination probes trained in one regime (long- vs short-form) generalize to
the other. For these experiments we use linear probes rather than LoRA probes, though we expect
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the qualitative trends to carry over since the asymmetries we observe are driven by data distribution
differences rather than probe capacity.

Long-form training → short-form evaluation. We first ask whether probes trained on long-form
data generalize to short-form evaluation. Figure 4 (left) confirms that probes trained only on long-
form training data (LongFact) achieve high AUC on short-form test data (TriviaQA), with only a
small performance gap (<0.05 AUC) compared to short-form-trained probes. The small gap suggests
that long-form-trained probes capture broadly transferable cues for factuality, even when evaluated
on much shorter, cleaner completions.

Short-form training → long-form evaluation. Motivated by the fact that labeling short-form
datasets is far easier and more efficient than annotating long-form content, we next test the reverse:
can we train probes only on short-form data and have them perform well on long-form hallucination
detection? This is an attractive idea in practice; if it worked, one could avoid the high cost of
long-form annotation while still solving the harder problem.

The results in Figure 4 (right) show that, although short-form-trained probes do improve with more
short-form data, they remain ∼0.10 AUC behind long-form-trained probes across all training-set sizes.
This gap persists despite the same probe architecture and training procedure, indicating that solving
short-form hallucination detection does not automatically yield strong long-form performance.

These asymmetric generalization results highlight the importance of including long-form data in
training, especially since long-form, multi-claim outputs are where most real-world hallucinations
occur in modern LLM applications.

5.2 Cross-model generalization
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Figure 5: Hallucination probes exhibit strong cross-model generalization. Left: Cross-model
generalization across all five models. The y-axis is the detector model (where the probe was trained),
and the x-axis is the test data model (whose generations are evaluated). Right: Cross-model training-
testing comparison for the Mistral-Small-24B probe. The y-axis indicates which model’s generations
were used as the training data source, and the x-axis indicates which model’s generations were used
as the test data source.

An important question is whether our hallucination probes can only identify hallucinated content in
their own outputs, or whether they generalize to detecting hallucinations in outputs from other models
as well. Success in the latter case would indicate that the probe captures fundamental, model-agnostic
signals of factuality rather than relying solely on internal signals specific to the generating model. This
cross-model analysis addresses two related but distinct questions that are crucial for understanding
both the nature of our detection approach and its practical deployment potential.

First, we investigate whether probes trained on one model’s generations can effectively detect
hallucinations in completions produced by different models—a capability that would enable universal
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hallucination monitoring across diverse LLM deployments.6 Second, we examine whether training
probes on other models’ generations (rather than their own) can still yield effective detectors, which
would inform strategies for leveraging high-quality training data from more capable models to
supervise smaller or less reliable ones.

Can probes trained on one model detect hallucinations in other models’ outputs? Following
the experimental setup in Section 4.1, we train LoRA-based probes for each of our five models on
their own annotated completions and evaluate them on the test sets of the other models. As shown in
Figure 5 (left), the results reveal strong cross-model transfer: off-diagonal AUC scores are typically
within 0.02–0.04 of the diagonal (same-model performance). This generalization suggests that the
probes mostly capture model-agnostic features of factuality, rather than model-specific signals.

The left heatmap additionally highlights two complementary scaling effects. First (row-wise), probes
trained on larger models consistently achieve higher performance across all test conditions, suggesting
that stronger detectors make better supervisors for other models.7 Second (column-wise), all probes
perform better when evaluating completions from smaller models than from larger ones, consistent
with the intuition that larger models may produce factually correct content that smaller detector models
simply lack the knowledge to verify, making those cases harder to identify as non-hallucinations.

Can probes learn effectively from other models’ training data? Figure 5 (right) shows that the
Mistral-Small-24B probe achieves comparable performance when trained on its own data or on Llama-
3.1-8B data, with AUC differences within 0.02. This further reinforces the strong transferability
observed, extending even to the choice of training data.

5.3 Impact on model outputs and behavior
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Figure 6: KL regularization enables tunable detection-preservation trade-offs. There is a trade-
off between hallucination detection performance (AUC) and behavioral preservation (KL divergence)
across different probe configurations. KL regularization creates a smooth Pareto frontier as λKL is
varied between 0 and 1, providing tunable control over this trade-off.

Integrating hallucination detection probes directly into the generating model’s forward pass offers
significant advantages, enabling real-time monitoring while avoiding the computational overhead of
external verification. However, this approach introduces an important design consideration: parameter
modifications that enhance detection performance may at the same time alter the model’s output
distribution, potentially affecting generation quality.8 This creates a spectrum of design trade-offs. At

6We note that this setting would require passing the generated completions through the monitoring model for
analysis, which incurs additional cost compared to token-level streaming detection performed directly on the
generating model.

7Note that this comparison does not control for the number of probe parameters: with identical LoRA settings,
larger models yield more adapter parameters, which may partly explain their higher scores.

8Interestingly, we anecdotally find that some LoRA configurations with minimal regularization lead to
increased epistemic caution in generations, where models become more likely to acknowledge uncertainty rather
than confidently hallucinating. See Appendix I.2 for further discussion and examples.
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Table 2: Comparison of model output stability and hallucination detection performance across
different probe configurations for Llama-3.1-8B. Win rate estimates have 90% confidence intervals
within ±2.1%, and all MMLU scores have standard errors of ±0.4%.

Model performance Probe performance

Configuration KL div. (↓) Win rate (%) (↑) MMLU (%) (↑) AUC (↑)

Baseline (linear probe) 0.0000 50.0 70.9 0.8535

LoRA (no regularization) 0.1048 35.9 63.4 0.8938

LoRA (λLM = 0.01) 0.0502 34.4 67.4 0.8938
LoRA (λLM = 0.50) 0.0610 47.2 72.1 0.8880

LoRA (λKL = 0.01) 0.0506 32.5 67.6 0.8939
LoRA (λKL = 0.50) 0.0046 52.8 71.2 0.8898

one extreme, linear probes preserve model behavior perfectly by leaving model parameters unchanged,
but achieve limited detection performance. At the other extreme, unregularized LoRA-based probes
maximize detection accuracy but may significantly alter the model’s output distribution.

To evaluate these trade-offs, we measure three aspects of model behavior preservation, alongside
detection performance. For model behavior, we assess: (1) KL divergence between the original and
modified output distributions; (2) win rate against the original model on Arena-Hard-Auto [Li et al.,
2024] as judged by GPT-4.1, measuring overall generation quality; and (3) accuracy on MMLU
[Hendrycks et al., 2021a], measuring retention of knowledge and reasoning capabilities. For detection
performance, we measure AUC on the LongFact test set.

To directly minimize behavioral changes while preserving detection performance, we employ KL
divergence regularization during LoRA training (Section 3.2). This approach explicitly penalizes
deviation from the original model’s output distribution, directly targeting the quantity we care
about—distribution shift—rather than using proxies like language modeling loss.

Figure 6 illustrates the fundamental trade-off between detection performance and behavioral preserva-
tion for Llama-3.1-8B. As we increase the KL regularization strength (λKL), KL divergence decreases
(better behavior preservation) while detection AUC slightly decreases, creating a smooth Pareto
frontier. KL regularization enables effective navigation of this trade-off space, achieving points with
high detection performance and minimal distributional shift. In contrast, unregularized LoRA (cross
symbol) achieves high detection performance but with substantial behavioral changes, while linear
probes (star) preserve behavior perfectly but limit detection capability.

Table 2 provides a broader evaluation across all approaches. KL regularization at λKL=0.50 achieves
good overall balance: near-zero KL divergence (0.0046), a win rate that slightly exceeds the original
model (52.8%), preserved MMLU performance (71.2%), while maintaining strong detection perfor-
mance (0.8898 AUC). This outperforms both unregularized LoRA and LM regularization approaches.
See Appendix I for additional details and results.

Based on these results, we recommend KL regularization to be used in practice. The λKL hyperparam-
eter allows practitioners to navigate the detection-preservation trade-off according to their specific
deployment context, prioritizing either higher detection performance or closer alignment to original
model behavior.

5.4 Hallucination monitoring enables selective answering

Beyond detecting hallucinations after generation, our probes enable real-time intervention during
generation, opening possibilities for dynamic response modification based on confidence signals. As
a proof of concept, we explore one such intervention: selective answering, where the system monitors
hallucination signals during generation and abstains when risk exceeds a threshold.

We evaluate this approach on SimpleQA [Wei et al., 2024a], a factual QA benchmark where responses
are categorized as correct, incorrect, or not attempted (abstained). Using probes trained with KL
regularization (λKL=0.5), we monitor each token’s probe score during generation. When any token’s
score exceeds threshold t, we halt generation and output an abstention (e.g., “I don’t know”).
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Figure 7: Real-time hallucination monitoring enables selective answering with higher reliability.
In a QA setting, we monitor probe scores for each token during generation; when any token’s probe
score exceeds threshold t, we halt generation and output an abstention. This yields a system that
can selectively answer only when the underlying model is confident, achieving higher conditional
accuracy, though at the cost of attempting fewer questions. Results for Llama-3.3-70B are displayed.

By selectively abstaining on uncertain questions, the system can improve reliability on the questions
that it does answer. We measure conditional accuracy (accuracy on attempted questions) and attempt
rate (fraction of questions attempted), capturing the trade-off between reliability and utility. Figure 7
shows results for Llama-3.3-70B across different probe thresholds. With no monitoring (t=1.0), the
system attempts a majority of questions (∼80%) but achieves low conditional accuracy (<30%).
As we enable more aggressive monitoring by lowering the probe threshold, the system becomes
increasingly selective, attempting fewer total questions, but with increasing conditional accuracy.

This pattern holds consistently across all models tested: selective answering improves conditional
accuracy while reducing attempt rate (see Table 6 in Appendix H).

By monitoring hallucination risk in real-time, we can build systems that better recognize when they
should abstain rather than risk providing misinformation—a critical capability for safe deployment in
high-stakes applications.

6 Limitations

Our approach faces several limitations that constrain practical deployment. First, our automated
annotation pipeline introduces substantial noise into both training and evaluation data. LLM judges
can make errors when verifying facts, search engines may fail to retrieve relevant evidence for
certain claims, and the mapping between claims and entities is sometimes ambiguous. Our controlled
evaluation reveals annotation noise concretely: 80.6% recall on synthetic hallucinations with a 15.8%
false positive rate (Appendix E). Such labeling errors create a performance ceiling that constrains
both training effectiveness and evaluation confidence.

Second, while our probes achieve promising AUC scores and outperform baselines, practical reliability
remains insufficient for production deployment. Our best LoRA probes achieve only ∼70% recall
at 10% false positive rate on long-form text. The hallucination-aware sampling experiments starkly
illustrate this limitation: meaningfully reducing hallucination rates requires sacrificing ∼50% of
correct answers. This trade-off renders the current approach impractical for real-world deployment
where users expect both accuracy and helpfulness.

Third, our focus on entity-level hallucinations captures only a subset of problematic model outputs.
Our method was designed specifically to detect fabricated content, not other forms of error like
faulty reasoning. However, our strong performance on the MATH dataset suggests the probe’s
capabilities generalize beyond this intended scope. This result indicates that the probe is sensitive
to a broader signal of factuality or model correctness, not just the presence of fabricated content.
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Further work is needed to explore the extent of this generalization. Additionally, our method targets
hallucinations against world knowledge rather than context-dependent hallucinations where generated
text conflicts with provided source material (e.g., as in CH-Wang et al. [2024]). Furthermore, not all
entity hallucinations are equally harmful; distinguishing between consequential and inconsequential
fabrications remains an open challenge.

7 Discussion

This work represents an initial step toward practical, real-time hallucination detection in long-form
generation. By framing hallucination detection as a token-level sequence labeling problem, our
streaming approach enables monitoring during generation without the computational overhead of
external verification pipelines. A key contribution is our automated annotation technique using a
frontier LLM augmented with web search to create fine-grained token-level labels that distinguish
between grounded and fabricated entities. Our LoRA-based probes achieve 0.89+ AUC on long-form
hallucination detection, significantly outperforming uncertainty-based baselines.

Looking ahead, future work should address the fundamental gaps identified in our evaluations
before practical deployment becomes feasible. This includes developing higher-quality annotation
techniques that reduce labeling noise, exploring more sophisticated generation-time interventions
that preserve informativeness while reducing errors, and expanding detection beyond entity spans to
capture reasoning and relational hallucinations. While significant challenges remain, our streaming
detection approach demonstrates the feasibility of token-level hallucination monitoring and provides
a promising foundation for advancing real-time factual reliability in language models.
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A Code and dataset availability

Our code as well as links to our datasets can be found at: https://github.com/obalcells/
hallucination probes.

B Additional annotated samples

B.1 Example from HealthBench

Legend: Probe probabilities | Supported entities | Hallucinated entities

QUERY

Rewrite 3 days postpartum mania, postpartum mother with mania, no prior

psych history. Provide an evidence-based postpartum mania management

algorithm.

LLAMA-3.3-70B

[...content truncated...]

Antipsychotic Medication (if necessary): If the patient exhibits

psychotic symptoms, such as delusions or hallucinations, consider adding

Olanzapine (5-10 mg/day) or Risperidone (2-4 mg/day).

Evidence-Based Rationale: The American Psychiatric Association (APA)

and the American College of Obstetricians and Gynecologists (ACOG)

recommend mood stabilization with lithium, valproate, or carbamazepine

as first-line treatment for postpartum mania.

References:

- American Psychiatric Association. (2010). Practice guideline for the

treatment of patients with bipolar disorder. American Journal of

Psychiatry, 167(3), 1-104.

- American College of Obstetricians and Gynecologists. (2018). Committee

Opinion No. 757: Screening for Perinatal Depression.

Obstetrics & Gynecology, 132(3), e208-e212.

- Sharma, V., & Khan, M. (2018). Postpartum bipolar disorder:

A review. Journal of Clinical Psychopharmacology, 38(3), 253-258.

Olanzapine 5-10
mg/day is within
accepted ranges for
bipolar disorder treat-
ment.

Valproate is explic-
itly contraindicated
as first-line treatment
and carbamazepine is
not recommended
first-line, while
lithium requires care-
ful monitoring and
is not automatic first-
line.

ACOG Committee
Opinion No. 757
exists and was pub-
lished in 2018 in
Obstetrics & Gyne-
cology.

Correct volume/pages
but wrong issue num-
ber 132(5) instead of
132(3).

Risperidone 2-4 mg/-
day is an appropriate
dosage range for treat-
ing acute mania and
psychotic symptoms.

ACOG is verified
as a real medical or-
ganization that pub-
lishes guidelines on
women’s health.

No APA bipolar
guideline from 2010
found in Am J Psy-
chiatry vol 167. APA
guidelines published
1994, revised 2002.

Could not verify this
specific 2018 article
by Sharma and Khan
in J Clin Psychophar-
macol. Found other
articles by these au-
thors on similar top-
ics but not this exact
citation.

Figure 8: An annotated example of hallucination detection in a response to a HealthBench prompt.
The underlines indicate entity spans labeled by our annotation pipeline: green denotes entities labeled
as supported, while red denotes entities labeled as hallucinated. Hallucination detection probe scores
for each token are shown as yellow highlights, with the intensity reflecting the score’s magnitude
(scores below 0.25 are not shown).
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B.2 Example from MATH

Legend: Probe probabilities

QUERY

What is the smallest positive perfect cube that can be written as the sum

of three consecutive integers?

LLAMA-3.1-8B

To find the smallest positive perfect cube that can be written as the

sum of three consecutive integers, we need to consider the properties

of perfect cubes and consecutive integers. A perfect cube is a number

that can be written as the cube of an integer, i.e., nˆ3, where n is

an integer. Consecutive integers are integers that follow each other in

order, i.e., n, n+1, n+2, etc.

Let’s consider the smallest perfect cubes and see if we can express them

as the sum of three consecutive integers:

1. 1ˆ3 = 1 (1 = 0 + 1 + 0)

2. 2ˆ3 = 8 (8 = 3 + 4 + 1)

3. 3ˆ3 = 27 (27 = 9 + 10 + 8)

4. 4ˆ3 = 64 (64 = 21 + 22 + 21)

5. 5ˆ3 = 125 (125 = 42 + 43 + 40)

We can see that 8 is the smallest perfect cube that can be written as

the sum of three consecutive integers.

Therefore, the smallest positive perfect cube that can be written as the

sum of three consecutive integers is 8.

Figure 9: An annotated example of hallucination detection in a response to a MATH prompt.
Hallucination detection probe scores for each token are shown as yellow highlights, with the intensity
reflecting the score’s magnitude (scores below 0.30 are not shown).
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C Dataset construction details

C.1 LongFact++

While LongFact [Wei et al., 2024b] aims for topical diversity, we observed structural limitations in
elicited responses, finding that the prompts often yield vague and generic information. To address
these limitations, we developed LongFact++, a dataset 10 times larger than LongFact, with three
objectives: (1) increase sample size, (2) diversify query structures to better reflect real user questions,
and (3) expand coverage to verifiable fact-rich domains.

Specifically, we construct LongFact++ to consist of:

• Topic-focused queries: We first use a frontier LLM (Claude Sonnet) to iteratively generate
a list of 1,000 highly specific seed topics spanning law, medicine, the natural sciences,
engineering, history, geography, and arts & culture. These specific seeds avoid broad
categories (e.g., “medicine”) in favor of precise formulations (e.g., “molecular mechanisms
of viral DNA replication in herpesviruses”). For each seed topic, a frontier LLM generates
20 diverse questions that vary in length, structure, and focus while remaining grounded in
the same seed, yielding natural queries that elicit structurally varied responses.

• Biography questions: We include an additional 500 biography-related prompts sourced
from [Min et al., 2023], using a fixed prompt template to generate questions about notable
individuals.

• Citation-focused prompts: We generate an additional ∼1,000 prompts related to vari-
ous research topics, where we specify to provide references throughout the text, eliciting
completions rich in verifiable citation-based entities.

• Legal prompts: We add 500 prompts based on well-known legal cases scraped from the
Wikipedia page “List of landmark court decisions in the United States” 9, generating queries
using predefined prompt templates that ask for the factual background of each case. We
found that prompting models with less famous cases resulted in high refusal rates; these
refusal responses contain little training signal for hallucination detection.

LongFact++, like LongFact, is a set of prompts, and does not itself serve as training data for
hallucination detection. We use LongFact and LongFact++ to elicit hallucination-rich responses from
target models. For each target model, we sample completions with temperature 0.1 and a maximum
generation length of 2,048.

For a subset of questions (specifically for biography questions), we filter out model responses that are
explicit refusals.

C.2 Dataset splits

Shared long-form test set. All models use the same 2,000-prompt long-form test set: 1,000 LongFact
and 1,000 LongFact++. The LongFact++ portion is sampled uniformly across medical, legal, citations,
and biographies to balance domain coverage. These exact 2,000 prompts are identical across models,
although their corresponding generations differ.

Long-form training reservoir and per-model sampling. After removing the shared test prompts, the
remaining LongFact/LongFact++ prompts form a training reservoir of approximately 22,000 prompts.
For each model we sample from this pool and generate one completion per prompt (temperature
0.1; max length 2,048). Primary models (Llama-3.1-8B, Llama-3.3-70B) use nLF=8,000 long-
form prompts per model; secondary models (Gemma-2-9B, Qwen-2.5-7B, Mistral-Small-24B) use
nLF=2,000.

Short-form (TriviaQA). For each model, we build a balanced TriviaQA split following the method
of Tillman and Mossing [2025]: we sample five completions per question at temperature 1.0; auto-
judge each against the ground-truth answer with an LLM-as-a-judge; retain only questions that are
unanimously correct (5/5) or unanimously incorrect (0/5); balance the resulting dataset. Within any
single model, a TriviaQA question appears in either that model’s train or test set, but not both. For
evaluation, each completion contributes a single answer span (the specific entity corresponding to

9https://en.wikipedia.org/wiki/List of landmark court decisions in the United States
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the model’s answer), which we score via span-max. For Llama-3.1-8B, we generate nSF=2,000
responses to short-form questions; for Llama-3.3-70B, we generate nSF=1,000.

HealthBench. HealthBench contains 5,000 dialogue-based samples between a model and either a
layperson or a healthcare professional. We filter the dataset, choosing to exclude samples that are
multi-turn, non-English, or that yield explicit refusals. After filtering, we retain ∼2,000 eligible
prompt–response pairs per model for Llama-3.1-8B and Llama-3.3-70B. HealthBench samples are
used only for evaluation and never included in training.

Per-model test sizes. All models share the 1,000 LongFact and 1,000 LongFact++ long-form test set.
Additional test set sizes are:

• Llama-3.1-8B: 2,000 samples from TriviaQA; 1,500 samples from HealthBench; 500
samples from MATH.

• Llama-3.3-70B: 1,000 samples from TriviaQA; 1,500 samples from HealthBench; 500
samples from MATH.

TriviaQA and HealthBench are constructed independently per model and are not guaranteed to be
disjoint across models (i.e., the same prompt may appear in both models’ splits), but within any
single model there is no train-test overlap for a given dataset. The subset of MATH is the same one
used in Lightman et al. [2024].
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C.3 Prompt for fact verification

System prompt for fact verification

You are a fact-checker. Your task is to fact-check a model's completion to some given
instruction.

Here's the instruction:
<instruction>{instruction}</instruction>

Here's the completion you'll have to fact-check:
<completion>{completion}</completion>

Focus on verifying:
- People (names, affiliations)
- Organizations
- Locations
- Dates and events
- Specific quantities/statistics
- Citations and references

For each entity:
1. Extract the minimal text span (just the entity itself, not surrounding context)
2. Use web search to verify if it's real
3. Label as:

- "Supported": Verified as correct
- "Not Supported": Appears to be fabricated or incorrect
- "Insufficient Information": Cannot verify with available information

Guidelines:
- An entity is correct not only if it is real and it exists (i.e. it isn't fabricated)
but also if it's correct in the context of the sentence and the instruction
- We're interested, not in spotting errors due to small technicalities, but rather in
finding things that the model has clearly bullshitted
- Be skeptical and cautious about highly specific or obscure claims: if you cannot
recall the fact with confidence from your own knowledge or the sources, do not guess;
use "Insufficient Information."
- The extracted span should contain only the specific name, number, citation, etc.
Please do not include anything else within the sentence in the extracted spans
- The spans you extract (the "text" field) should match word-for-word with the original
span in the completion.

Return the output strictly as a JSON array of objects (ordered by the index in which
they appear in the text) following this schema:
```json
[

{
"text": "The minimal span containing just the entity (e.g., 'Sarah Chen',
not 'Dr. Sarah Chen from MIT')",

"label": "Whether the entity/fact is verified as real, fabricated, or unverifiable",
"verification_note": "Brief explanation of the verification result"

},
...

]
```

Figure 10: System prompt used for search-based fact verification (Claude 4 Sonnet).
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D Evaluation details

This section details the specific labeling and scoring methods used to evaluate our probes and baselines
across the three distinct task categories.

D.1 Long-form evaluation (LongFact, LongFact++, and HealthBench)

The entity labels for long-form completions are derived directly from our automated annotation
pipeline, as described in Section 3.1. Each entity span is labeled as either supported or hallucinated.

For token-level methods (token-level perplexity, token-level entropy, and token-level probes), we
score each entity span using the span-max rule: the span’s score is the maximum score of any token it
contains. For semantic entropy, the score for an entity span is calculated by taking the text preceding
the span as a prefix, sampling k=10 continuations, clustering them by semantic equivalence, and
computing the entropy of the cluster distribution.

D.2 Short-form evaluation (TriviaQA)

Labels for TriviaQA are created by judging model completions against the known correct answer.
Following the method of Tillman and Mossing [2025], we generate five completions for each
question and use an LLM-as-a-judge to grade them. We only include questions where the model
was unanimously correct or incorrect across all five generations. This binary label is assigned to the
single “answer entity span” in the test completion (the particular entity span corresponding to the
answer of the question).

Token-level methods are scored using the span-max rule on the single answer entity span. For
semantic entropy, we sample k=10 full answers to the question. The score is the entropy calculated
over semantic clusters of these 10 answers.

D.3 Mathematical reasoning evaluation (MATH)

The label for each problem in the MATH dataset is determined by the correctness of a single, greedily
generated response. We use an LLM-as-a-judge to classify the final numerical or algebraic answer as
either correct or incorrect.

As MATH completions lack discrete entities, we adapt our scoring for token-level methods. The
score for a generation is the maximum score across all tokens in the entire response. To calculate
semantic entropy, we sample k=10 completions at temperature 0.6. An LLM then extracts the final
answer from each completion, and the score is the entropy computed over semantic clusters of these
10 extracted answers.

25



E Label quality validation

The reliability of our token-level hallucination detection approach fundamentally depends on the
quality of our training labels. Since we use an LLM-based annotation pipeline to identify hallucinated
entities in long-form text, ensuring high-quality labels is critical for training effective detectors. To
validate our dataset quality, we conduct three complementary experiments that assess different aspects
of label reliability.

Addressing annotation hallucinations. We face an inherent circularity risk when using LLMs to
annotate hallucinations: the annotating LLM could itself hallucinate during the labeling process. This
manifests in our pipeline occasionally producing annotations for text spans that do not exist in the
original completion. For example, the pipeline might return an annotation claiming the text contains
“Accel Partners invested $5 million in Facebook in 2005” and flag the $5 million figure as incorrect,
when in reality the original completion never mentioned Accel Partners at all. While these cases are
rare, we implement a simple but effective safeguard: all annotated spans must be exactly matched
against the original completion text, and any spans that cannot be cross-referenced are automatically
discarded. This ensures that hallucinated annotations never contaminate our training data, though it
does not guarantee that the labels assigned to valid spans are themselves accurate.

Human annotation agreement. To validate the accuracy of our automated labels, we conduct
manual verification on a randomly sampled subset of annotated entity spans. Human annotators
independently verify each span without access to the LLM-assigned labels, searching for supporting
evidence using web search engines and trusted sources.

On a sample of 50 annotated spans, we find that human annotations agree with the LLM labels in
84% of cases. While this high agreement rate validates our annotation approach, this evaluation
method has an important limitation: it only assesses precision (correctness of assigned labels) without
measuring recall (proportion of hallucinations detected).

Controlled evaluation with synthetic hallucinations. To rigorously evaluate both precision and
recall of our labeling pipeline, we create a controlled test set with known ground-truth hallucinations.
Our synthetic evaluation framework operates as follows:

1. Source selection: We extract factual content from Wikipedia articles across diverse topics,
ensuring high-quality, verifiable source material.

2. Content transformation: An LLM rephrases the Wikipedia content into conversational
dialogue format while preserving all factual information. This transformation prevents our
annotation model from relying on memorized Wikipedia text while maintaining factual
accuracy. We acknowledge that this rephrasing step introduces a potential risk of the
LLM injecting hallucinations during the transformation. However, in practice we have not
observed this risk manifest—we explicitly prompt the LLM to simply rephrase the given
content without adding any new factual information, requiring it to express exactly the
same facts while only changing the style, order, and format. We believe this rephrasing
task is considerably safer than asking an LLM to generate content from scratch, though we
acknowledge the theoretical risk.

3. Controlled hallucination injection: We prompt an LLM to introduce specific, subtle factual
errors into the rephrased content, such as incorrect dates, misattributed quotes, or wrong
numerical values. Crucially, we track the exact location and nature of each modification,
creating a dataset where we know precisely which spans contain hallucinations.

4. Pipeline evaluation: We process these synthetic examples through our standard annotation
pipeline and compare the results against ground truth.

Evaluating on 100 synthetic examples containing 904 injected hallucinations, we observe the follow-
ing performance metrics:

• Recall: Our pipeline detects 80.6% (729/904) of the injected hallucinations, indicating that
approximately one in five hallucinations may go undetected.

• Precision on hallucinations: Not all annotated spans returned by our labeling pipeline
necessarily intersect with the spans we purposefully modified to inject hallucinations.
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However, in cases where an annotated span does coincide with an injected hallucination
span, the pipeline assigns the correct label (“Not Supported” or “Insufficient Information”)
in 100% (729/729) of cases.

• Precision on factual content: For spans extracted from unmodified (factual) portions of the
text, our pipeline correctly labels them as “Supported” in 84.2% of cases, suggesting a false
positive rate of 15.8%.

These results reveal that our labeling pipeline exhibits conservative behavior, with a tendency to
over-flag content as potentially hallucinated. While this reduces the risk of training on mislabeled
hallucinations, it may also introduce noise by incorrectly flagging some factual content. We note that
this evaluation may overestimate real-world performance since Wikipedia-sourced content is likely
easier to verify than naturally occurring hallucinations in LLM outputs.

While we would ideally achieve higher recall than 80.6%, we partially address this limitation through
our training methodology. In our loss function, we assign significantly higher weight to tokens that
coincide with annotated spans compared to the rest of the tokens. This design choice ensures that our
probes are not heavily penalized for activating on potentially hallucinated content that our annotation
pipeline missed.

Cross-model annotation robustness. We compare labels generated by our primary annotator
(Claude Sonnet 4) against those from Claude Opus 4 on 224 test completions. Table 3 shows
hallucination detection performance when evaluated on test data annotated by each model.

Table 3: Cross-model annotation robustness. Both models are evaluated on 224 completions from
Llama-3.1-8B test set, with annotations from either Claude Sonnet 4 or Claude Opus 4.

Probe model Annotation model AUC
Llama-3.1-8B Claude Sonnet 4 0.9100
Llama-3.1-8B Claude Opus 4 0.9233

Llama-3.3-70B Claude Sonnet 4 0.9330
Llama-3.3-70B Claude Opus 4 0.9406

The results demonstrate strong cross-annotator consistency, with only a modest improvement of
∼0.01 AUC when using Opus 4 annotations. This suggests that our pipeline produces robust labels
that are not overly sensitive to the annotator choice. The slight improvement with Opus 4 may
reflect its enhanced capabilities as a more advanced model, potentially offering better judgment in
search-based verification tasks and more effective use of search tools.

Limitations. While our validation experiments demonstrate satisfactory label quality for training
effective hallucination detectors, several limitations warrant discussion. First, our human evaluation
sample size is limited due to the time-intensive nature of manual verification. Second, our synthetic
hallucination evaluation may not fully capture the complexity of naturally occurring hallucinations,
which often involve more subtle forms of factual inconsistency. Finally, our conservative labeling ap-
proach, while reducing the risk of false negatives in training data, may limit the ultimate performance
ceiling of our detectors.

Despite these limitations, our multi-faceted validation approach provides confidence that our au-
tomated labeling pipeline produces training data of sufficient quality for developing token-level
hallucination detectors.
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F Baselines

F.1 Token-level uncertainty metrics

Token-level entropy. For token ti with next-token distribution p(· | q, t<i),

Hi = −
∑
v∈V

p(v | q, t<i) log p(v | q, t<i), (3)

where V is the token vocabulary. We compute the maximum-aggregation score over a span s as

Hs = max
i∈[sstart,send]

Hi. (4)

Token-level perplexity. For token ti with next-token distribution p(· | q, t<i),

PPLi = exp
(
− log p(ti | q, t<i)

)
. (5)

We compute the maximum-aggregation score over a span s as

PPLs = max
i∈[sstart,send]

PPLi. (6)

F.2 Semantic entropy

Semantic entropy. Semantic entropy [Farquhar et al., 2024] detects hallucinations by measuring
uncertainty across semantically equivalent generations. Given a query q, the method samples multiple
completions, which are then grouped into clusters C based on semantic equivalence. The probability
of a semantic cluster, p(c|q), is operationalized as the fraction of generations in that cluster. Semantic
entropy quantifies the uncertainty associated with the distribution p(c|q):

HSE(t,q) = −
∑
c∈C

p(c|q)[log p(c|q)]. (7)

Overview. Following Kuhn et al. [2023], Farquhar et al. [2024], we estimate uncertainty over
meanings by sampling k completions for the same prompt prefix, clustering completions by semantic
equivalence, and computing the entropy over cluster probabilities.

Clustering by semantic equivalence. We form clusters via pairwise bidirectional entailment judged
by GPT-4.1: two completions u, v are linked if u |= v and v |= u. We build an undirected graph on
k samples and take connected components as semantic clusters C = {c}. Cluster probabilities are
empirical frequencies p(c) = |c|/k. The semantic entropy is

HSE = −
∑
c∈C

p(c) log p(c). (8)

Task-specific setup.

• TriviaQA (short-form): For each question, we sample k=10 answers, judge pairwise
entailment using only the generated responses, cluster as above, and compute HSE across
these responses.

• Long-form spans: For each annotated span s, we take the completion prefix up to (but not
including) the entity s, then sample k=10 continuations with a target length up to 2× the
original span length. We cluster the k continuations and use the resulting HSE as the span
score.

• Math: For each question, we generate one greedy completion (temperature 0) and sample
k=10 additional completions at temperature 0.6. We use an LLM to extract the final
numerical or algebraic answer from each completion. We compute HSE by clustering only
the k=10 extracted answers from the temperature-sampled completions based on pairwise
entailment.
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F.3 Black-box self-evaluation: can we just ask the model whether it’s hallucinating?

Given that our white-box probes demonstrate that internal model states contain sufficient information
to detect hallucinations, a natural question arises: can we achieve effective hallucination detection by
simply asking the model directly, without requiring access to internal representations? This black-box
self-evaluation approach would be more practical for deployment scenarios where probe training is
infeasible or where models are accessed only through APIs. Here we investigate whether models
can reliably identify their own hallucinations when prompted appropriately, and examine how this
capability scales from short-form to long-form content.

Our evaluation approach employs a multi-turn conversation format. After the model generates a
completion in response to an instruction from our dataset, we select specific sentences within that
completion and ask the model to evaluate them in a follow-up question. For sentence selection,
we use our existing annotations to identify sentences where either all contained annotated spans
are labeled as supported or all are labeled as hallucinated. We discard sentences that contain no
annotated spans or have mixed support labels, ensuring clean training signal. We then reference
each selected sentence from the model’s previous response and ask: “Please evaluate whether the
following sentence in our conversation contains a hallucination. Answer with ‘Yes’ or ‘No’.” This
multi-turn formulation provides the model with the full conversational context necessary for accurate
self-evaluation.

We adopt this methodology for several reasons. This black-box self-evaluation approach is highly
sensitive to the specific prompt used, and our multi-turn format yielded the best performance after
extensive experimentation. Second, it is designed to be feasible for long-form content where sentences
often depend on preceding context for proper interpretation—pronouns may lack clear referents,
statistics may require earlier context to understand their meaning, and factual claims may build
on previously established information. Third, while our dataset consists of span-level annotations,
we instead evaluate entire sentences here because: (1) based on our experiments, sentence-level
evaluation significantly outperforms direct span-level verification, and (2) it represents a more realistic
deployment scenario, since span-level evaluation would require a priori knowledge of which specific
text segments to verify.

For comparison with our probe-based approach, we also evaluate our standard LoRA probes on the
same sentence-level task by applying the identical sentence selection procedure (sentences containing
only supported or only unsupported spans) but treating each complete sentence as a single span rather
than individual entities.
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Figure 11: Self-evaluation results comparing AUC performance across datasets. Left: TriviaQA
(short-form) results where models achieve moderate self-evaluation performance. Right: Long-form
results demonstrating the performance gap that emerges when scaling to complex, multi-factual
content. For long-form evaluation, we train and test on 10,000 samples, while for short-form we
use 1,000 samples for Llama-3.1-8B and 2,000 for Llama-3.3-70B. All training and test datasets are
balanced between hallucinated and non-hallucinated examples.
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Figure 11 presents our results, revealing two key findings. First, the self-evaluation approach shows
moderate capability on short-form content (TriviaQA), achieving AUCs between 0.81–0.89. However,
its effectiveness does not scale well to long-form content, where performance drops significantly
across both models tested (AUCs between 0.58–0.68). Second, we observe that the larger model
(Llama-3.3-70B) performs substantially better at self-evaluation than the smaller model (Llama-3.1-
8B), suggesting that self-awareness of factual accuracy may improve with model scale.

In addition to prompting-based evaluation, we also implemented a supervised fine-tuning baseline
where we trained models specifically for this task using LoRA adapters. We constructed training
datasets by pairing each model’s completions with multi-turn conversations where the model is asked
to evaluate specific sentences, using the same prompting strategy described above. The fine-tuning
process optimizes the model to correctly answer “Yes” for sentences containing only unsupported
spans and “No” for sentences with only supported spans. Surprisingly, this fine-tuning yields only
marginal performance improvements over the prompting approach. We included this baseline for
two reasons: to ensure a fair comparison with our trained probes, and as a sanity check to verify that
performance limitations were not due to suboptimal prompting or other spurious factors. While we
optimized our prompting method before applying fine-tuning, we acknowledge that jointly optimizing
prompting strategies with fine-tuning in mind might yield better results. Alternative approaches—
such as including reasoning traces in the supervised-fine-tuning data, providing more comprehensive
guidelines, or constructing the dataset differently—could potentially improve performance. Neverthe-
less, we believe our implementation represents a reasonable effort to present this baseline, and we
include these results for completeness.

While the approach shows some capability on short-form data, the challenge of detecting halluci-
nations in long-form generations remains substantial. The dramatic performance degradation when
moving from TriviaQA to our long-form datasets indicates that the complexity of multi-factual,
context-dependent content poses fundamental challenges for self-evaluation approaches. This dis-
parity suggests that self-evaluation faces particular challenges in long-form settings that are better
addressed by internal representations.
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G Extended results: long-form hallucination detection

G.1 LongFact++ evaluation, primary models

Table 4: Extended results for Table 1, displaying evaluations on LongFact++.
Dataset Method Llama-3.1-8B Llama-3.3-70B

AUC (↑) R@0.1 (↑) AUC (↑) R@0.1 (↑)

LongFact++
(long-form)

Semantic entropy 0.7082 0.2368 0.6757 0.2885
Entropy 0.7300 0.2900 0.7389 0.3701
Perplexity 0.7466 0.3400 0.7313 0.3424
Linear probe 0.8678 0.6207 0.8937 0.6971
LoRA probe 0.9036 0.7052 0.9265 0.7788

G.2 LongFact and LongFact++ evaluation, secondary models

Table 5: Results for secondary models, as referenced in Section 4.2.
Dataset Method Gemma-2-9B Qwen-2.5-7B Mistral-Small-24B

AUC (↑) R@0.1 (↑) AUC (↑) R@0.1 (↑) AUC (↑) R@0.1 (↑)

LongFact
(long-form)

Linear probe 0.8200 0.5362 0.8383 0.5432 0.8479 0.5752
LoRA probe 0.8733 0.6206 0.8947 0.6645 0.8894 0.6761

LongFact++
(long-form)

Linear probe 0.8386 0.5560 0.8467 0.5549 0.8722 0.6278
LoRA probe 0.8860 0.6327 0.8961 0.6757 0.8893 0.6927

H Extended results: selective answering

Table 6: Selective answering results for all models. Selective answering (Section 5.4) improves
conditional accuracy, at the cost of decreasing the total number of questions attempted. The selective
answering results displayed here are obtained using a probe threshold of t=0.5.

Model Conditional accuracy (%) Attempt rate (%)

No intervention Selective answering No intervention Selective answering

Llama-3.1-8B 19.7 48.8 10.1 2.2
Llama-3.3-70B 27.9 50.4 76.1 19.1
Mistral-Small-24B 18.6 37.6 29.5 7.6
Gemma-2-9B 9.1 23.2 59.8 9.2
Qwen-2.5-7B 5.5 11.3 79.4 11.2
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I Impact on model outputs and behavior

I.1 Quantitative analysis

We evaluate the impact of LoRA fine-tuning on model outputs using three complementary metrics:

• KL divergence quantifies distributional changes by computing the average KL divergence
between the original model (πref) and the LoRA-adapted model (πθ) across token positions:
LKL = 1

T

∑T
t=1 DKL

(
πθ(·|q, t) ||πref(·|q, t)

)
. We generate completions from the original

model on 750 prompts from Arena-Hard-Auto [Li et al., 2024], and, over these completions,
compute the average token-wise KL divergence between the original model distribution and
the modified model distribution.

• Win rate measures generation quality via GPT-4.1 pairwise comparisons on Arena-Hard-
Auto [Li et al., 2024], with mean and confidence intervals obtained from bootstrap resam-
pling.

• MMLU accuracy [Hendrycks et al., 2021a] evaluates knowledge retention using standard
zero-shot chain-of-thought prompting. We use Inspect [AI Security Institute, 2024] to run
evaluations.

Table 7 provides comprehensive win-rate results across different regularization strengths, showing
that regularization values λ of 0.50 or higher tend to preserve model quality.

Figure 12 demonstrates that KL-regularized probes achieve superior trade-offs compared to LM-
regularized probes. KL regularization creates smooth, predictable behavior as λKL increases, while
LM regularization exhibits erratic patterns—higher λLM does not consistently reduce KL divergence
and can even increase it through overfitting.

Table 7: Win rates on Arena-Hard-Auto for Llama-3.1-8B variants, as judged by GPT-4.1. Each win
rate is the mean estimate from a bootstrap analysis (100 resamples of the battle outcomes). The CI
represents the corresponding 90% percentile confidence interval.

Variant λ Win rate (%) CI (%)

Baseline − 50.0 (−0.0 / + 0.0)

LoRA λLM

0.01 34.4 (−2.0 / + 2.1)
0.05 39.0 (−1.8 / + 1.7)
0.10 43.3 (−1.9 / + 1.9)
0.20 42.0 (−1.8 / + 2.0)
0.50 47.2 (−1.8 / + 1.5)
0.90 48.3 (−2.0 / + 2.4)
0.99 50.4 (−2.2 / + 2.4)
0.999 48.7 (−2.1 / + 2.1)
0.9999 48.2 (−1.9 / + 1.9)

LoRA λKL

0.00 35.9 (−2.1 / + 2.2)
0.01 32.5 (−1.9 / + 1.8)
0.05 39.7 (−2.0 / + 2.0)
0.10 45.3 (−1.9 / + 2.1)
0.20 44.7 (−2.3 / + 2.2)
0.50 52.8 (−2.0 / + 2.1)
0.90 53.3 (−1.7 / + 1.8)
0.99 52.4 (−2.1 / + 2.0)
0.999 48.9 (−1.7 / + 1.7)
0.9999 46.3 (−2.0 / + 2.5)
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Figure 12: Trade-off between hallucination detection (AUC) and distributional shift (KL divergence).
Each point corresponds to a different regularization strength λ.
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Figure 13: Trade-off between hallucination detection (AUC) and LM loss on model generations.
However, LM loss is not ultimately the metric we care about. Minimizing LM loss can result in
overfitting and distribution shift.
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I.2 Qualitative analysis

After training LoRA probes with minimal regularization, we anecdotally observe changes in the
model’s output distribution that suggest increased epistemic caution and reduced propensity for
hallucination.

In this section, we present several anecdotal examples comparing outputs from baseline models
against models augmented with LoRA adapters. The LoRA adapters presented here were trained
with λLM=0.01, with a linear probe head at the final layer (i.e., at the residual stream immediately
before the unembedding).10 All generations are produced with temperature 0. The examples suggest
three key behavioral changes: (1) the models become more conservative in making specific factual
claims, (2) they more readily acknowledge uncertainty or inability to recall specific details, and (3) in
some cases, they explicitly recognize when they might be generating unreliable information.

USER

Who was the referee in the rugby match between Georgia and Portugal that was part of the 2022 Rugby
Europe Championship on February 6, 2022?

Gold Answer

Romain Poite

Llama-3.3-70B

The referee in the rugby match between Geor-
gia and Portugal that was part of the 2022
Rugby Europe Championship on February 6,
2022, was Chris Busby.

Llama-3.3-70B + LoRA

The referee for the rugby match between
Georgia and Portugal in the 2022 Rugby Eu-
rope Championship on February 6, 2022, was
Christopher Lincoln or ‘Lincoln’ but I cannot
confirm this, a more reliable source would be
needed.

Figure 14: Example of hallucination detection affecting generation behavior. The baseline Llama-3.3-
70B confidently states an incorrect referee name. The LoRA-augmented model exhibits an interesting
behavior: it still provides an incorrect answer but immediately acknowledges its uncertainty with
“but I cannot confirm this, a more reliable source would be needed.”

10Note that this is distinct from the layer selection used in the rest of the paper, where we attach the probe head
to ⌊0.95× num layers⌋. Empirically, we only observe these qualitative behavioral changes when optimizing
probes on the last layer.
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USER

O UGLY NINE is an anagram of which singer songwriter?

Gold Answer

Neil Young

Llama-3.1-8B

The anagram “O UGLY NINE” can be rear-
ranged to spell “Lynyrd Skynyrd”, which is a
famous American rock band.

Llama-3.1-8B + LoRA

I couldn’t find any information on a well-
known singer or songwriter with the anagram
“O UGLY NINE”.

Figure 15: The baseline model confidently provides an incorrect answer (“Lynyrd Skynyrd” is not
even a valid anagram of “O UGLY NINE”). The LoRA-augmented model correctly expresses inability
to solve the anagram, rather than guessing an incorrect answer.

USER

Provide a treatment plan for a 29-year-old woman presenting 3 days postpartum with manic symptoms
including decreased sleep, elevated mood, and excessive energy. She has a past history of bipolar I
disorder. Keep the answer concise (1-2 paragraphs long), specific and evidence-based.

Llama-3.3-70B

Given the patient’s history of bipolar I disor-
der and current manic symptoms postpartum,
a treatment plan should prioritize mood sta-
bilization and safety. The patient should be
started on a mood stabilizer, such as lithium
(600-900 mg/day) or valproate (500-1000 mg/-
day), with close monitoring of serum levels
and renal function. Additionally, a second-
generation antipsychotic, such as olanzapine
(5-10 mg/day) or quetiapine (100-200 mg/day),
may be added to help manage manic symptoms
and promote sleep.
It is essential to consider the patient’s postpar-
tum status and potential breastfeeding plans
when selecting medications. Lithium and val-
proate are generally considered compatible
with breastfeeding, but serum levels should
be monitored in the infant. Olanzapine and
quetiapine are also considered relatively safe
during breastfeeding, but the patient should
be informed of the potential risks and benefits
[. . . ]

Llama-3.3-70B + LoRA

Given the patient’s history of bipolar I disorder
and presentation of manic symptoms 3 days
postpartum, a comprehensive treatment plan is
crucial. The plan should prioritize mood sta-
bilization and address the patient’s decreased
sleep, elevated mood, and excessive energy.
Medications such as mood stabilizers (e.g.,
lithium, valproate) or atypical antipsychotics
(e.g., olanzapine, risperidone) may be consid-
ered. However, it’s essential to consider the
postpartum context and potential breastfeed-
ing plans when selecting medications. For
example, some medications like lithium and
valproate are generally used with caution in
breastfeeding due to their potential to pass into
breast milk.
A treatment plan for this patient may involve
hospitalization for close monitoring, especially
if there are concerns about the patient’s or her
baby’s safety. Medications like olanzapine
or risperidone could be initiated, considering
their efficacy in managing manic symptoms.
[. . . ]

Figure 16: The baseline generation contains potentially life-threatening errors: the lithium dosing
(600-900 mg/day) is underdosed for acute mania, and the claim that lithium is “generally considered
compatible with breastfeeding” overstates its safety profile. The LoRA-augmented model is appropri-
ately cautious about breastfeeding risks with lithium and provides safer, albeit less detailed, guidance.
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USER

collagen for knee arthritis evidence

Llama-3.1-8B

Collagen supplements have gained popularity
in recent years as a potential treatment for knee
arthritis. While some studies suggest that col-
lagen may help alleviate symptoms of knee
arthritis, the evidence is not yet conclusive.
Here are some key findings from recent stud-
ies:
Positive studies:
1. A 2017 study published in the Jour-
nal of Medicinal Food found that collagen
hydrolysate supplementation (10g/day for 6
months) improved knee pain and function in
patients with knee osteoarthritis.
2. A 2019 study published in the Journal of
the International Society of Sports Nutrition
found that collagen peptide supplementation
(10g/day for 24 weeks) improved knee pain
and function in athletes with knee osteoarthri-
tis.
3. A 2020 study published in the Journal
of Orthopaedic Research found that collagen
hydrolysate supplementation (10g/day for 12
weeks) reduced knee pain and improved func-
tion in patients with knee osteoarthritis.
[. . . ]
References:
1. Kondo et al. (2017). Effects of collagen hy-
drolysate on knee joint pain and function in
patients with osteoarthritis. Journal of Medici-
nal Food, 20(10), 1031-1038.
2. Kondo et al. (2019). Effects of collagen pep-
tide supplementation on knee joint pain and
function in athletes with osteoarthritis. Journal
of the International Society of Sports Nutrition,
16(1), 1-9.
3. Lee et al. (2020). Effects of collagen
hydrolysate on knee joint health in patients
with osteoarthritis. Journal of Orthopaedic Re-
search, 38(5), 931-938.
[. . . ]

Llama-3.1-8B + LoRA

Collagen for knee arthritis has gained popu-
larity in recent years due to its potential ben-
efits in improving joint health and reducing
symptoms of arthritis. Here are some evidence-
based findings on the use of collagen for knee
arthritis:
1 Collagen Supplements and Joint Health: A
2019 study published in the Journal of Medic-
inal Food found that a collagen supplement
improved joint space and reduced pain in pa-
tients with knee osteoarthritis. (1)
2. Collagen Peptide Supplementation: A 2014
study published in the Journal of the Interna-
tional Society of Sports Nutrition found that
collagen peptide supplementation improved
joint pain and reduced inflammation in ath-
letes. (2)
3. Collagen for Knee Osteoarthritis: A 2019
study published in the Journal of Medicinal
Food found that a collagen supplement im-
proved joint space and reduced pain in patients
with knee osteoarthritis. (1)
[. . . ]
References:
(1) Oesser et al. (2019) - Unfortunately, I
couldn’t find the specific study from 2019 in
the Journal of Medicinal Food that I mentioned
earlier. However, I can provide information on
a study from 2019 in the Journal of Medicinal
Food, but I couldn’t verify the exact study I
mentioned earlier.
(2) Shiraki et al. (2014) - Unfortunately, I
couldn’t find the specific study from 2014
in the Journal of the International Society of
Sports Nutrition that I mentioned earlier.
[. . . ]
I apologize for any confusion caused by the
lack of specific references earlier. If you need
more information or specific references, I can
try to provide them.

Figure 17: The baseline model confidently cites multiple specific studies with full details. The LoRA
model initially cites studies but then acknowledges it cannot verify these citations when attempting to
provide references.
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J Use of existing assets

Table 8: List of models used in this work.
Name Source License

Llama-3.1-8B-Instruct Grattafiori et al. [2024] Meta Llama 3.1 Community License
Llama-3.3-70B-Instruct Grattafiori et al. [2024] Meta Llama 3.3 Community License
Qwen2.5-7B-Instruct Yang et al. [2025] Apache License 2.0
Gemma-2-9B-IT Riviere et al. [2024] Gemma License (commercial-friendly

terms of use)
Mistral-Small-24B-Instruct-2501 [Mistral AI, 2025] Apache License 2.0

Table 9: List of datasets used in this work.
Dataset Source License
LongFact Wei et al. [2024b] Apache License 2.0
TriviaQA Joshi et al. [2017] Apache License 2.0
HealthBench Arora et al. [2025] MIT License
SimpleQA Wei et al. [2024a] MIT License

K Compute statement

Training a LoRA-based probe for Llama-3.1-8B-Instruct on the full annotated dataset (as specified in
Section 4.1) with a batch size of 8 takes less than 2 hours on an H100 GPU.
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