
Diffusion Factor Models:
Generating High-Dimensional Returns with

Factor Structure

Minshuo Chen∗, Renyuan Xu†, Yumin Xu‡, and Ruixun Zhang§

First version: April 2025; This version: July 2025

Abstract

Financial scenario simulation is essential for risk management and portfolio optimization, yet it
remains challenging especially in high-dimensional and small data settings common in finance. We
propose a diffusion factor model that integrates latent factor structure into generative diffusion
processes, bridging econometrics with modern generative AI to address the challenges of the curse
of dimensionality and data scarcity in financial simulation. By exploiting the low-dimensional factor
structure inherent in asset returns, we decompose the score function—a key component in diffusion
models—using time-varying orthogonal projections, and this decomposition is incorporated into the
design of neural network architectures. We derive rigorous statistical guarantees, establishing non-
asymptotic error bounds for both score estimation at Õ

(
d5/2n−

2
k+5

)
and generated distribution

at Õ
(
d5/4n

− 1
2(k+5)

)
, primarily driven by the intrinsic factor dimension k rather than the number

of assets d, surpassing the dimension-dependent limits in the classical nonparametric statistics
literature and making the framework viable for markets with thousands of assets. Numerical studies
confirm superior performance in latent subspace recovery under small data regimes. Empirical
analysis demonstrates the economic significance of our framework in constructing mean-variance
optimal portfolios and factor portfolios. This work presents the first theoretical integration of
factor structure with diffusion models, offering a principled approach for high-dimensional financial
simulation with limited data. Our code is available at https://github.com/xymmmm00/diffusio
n_factor_model.

Keywords: Generative Modeling; Diffusion Model; Asset Return Generation; Factor Model; Error
Bound; Portfolio Construction;

∗Department of Industrial Engineering and Management Sciences, Northwestern University. minshuo.chen@nor
thwestern.edu (email).

†Department of Finance and Risk Engineering, New York University. rx2364@nyu.edu (email).
‡School of Mathematical Sciences, Peking University. xuyumin@pku.edu.cn (email).
§School of Mathematical Sciences, Center for Statistical Science, Laboratory for Mathematical Economics and

Quantitative Finance, and National Engineering Laboratory for Big Data Analysis and Applications, Peking Univer-
sity. zhangruixun@pku.edu.cn (email).

ar
X

iv
:2

50
4.

06
56

6v
4

 [
q-

fi
n.

ST
]

 2
3

Ju
l 2

02
5

https://github.com/xymmmm00/diffusion_factor_model
https://github.com/xymmmm00/diffusion_factor_model
minshuo.chen@northwestern.edu
minshuo.chen@northwestern.edu
rx2364@nyu.edu
xuyumin@pku.edu.cn
zhangruixun@pku.edu.cn
https://arxiv.org/abs/2504.06566v4

Contents

1 Introduction 1
1.1 Our Work and Contributions . 1
1.2 Related Literature . 3
1.3 Notation . 4

2 Problem Set-up for Diffusion Factor Models 4
2.1 Generative Diffusion Models . 4
2.2 Asset Returns and Unknown Factor Structure . 6

3 Score Decomposition under Diffusion Factor Model 7
3.1 Score Decomposition . 7
3.2 Choosing Score Network Architecture . 9

4 Score Approximation and Estimation 10
4.1 Theory of Score Approximation . 10
4.2 Theory of Score Estimation . 12

5 Theory of Distribution Estimation 13

6 Numerical Study with Synthetic Data 17

7 Empirical Analysis 19
7.1 Mean-Variance Optimal Portfolio . 19
7.2 Factor Portfolio . 23

8 Conclusion 24

A Omitted Proof in Section 3 32

B Omitted Proofs in Section 4 33
B.1 Proof of Theorem 1 . 33
B.2 Proof of Theorem 2 . 37
B.3 Supporting Lemmas and Proofs . 44

C Omitted Proofs in Section 5 50
C.1 Proof of Theorem 3 . 50
C.2 Supporting Lemmas for Theorem 3 . 52

C.2.1 Proof of Lemma 2 . 52
C.2.2 Proof of Lemma 3 . 55
C.2.3 Other Supporting Lemmas for Theorem 3 . 58

D Additional Details of the Numerical Study with Synthetic Data 62

E Additional Details of the Empirical Analysis 63

1 Introduction

Financial scenario simulation, central to quantitative finance and risk management, has evolved
significantly over recent decades (Alexander 2005, Eckerli and Osterrieder 2021, Brophy et al. 2023).
Generating realistic and diverse financial scenarios is crucial not only for institutional traders to
better manage their strategy risks, but also for regulators to ensure market stability (Acharya
et al. 2023, Schneider, Strahan, and Yang 2023, Shapiro and Zeng 2024). The US Federal Reserve
evaluates market conditions and releases a series of market stress scenarios on an annual basis
(Federal Reserve Board 2023). Financial institutions are required to apply these scenarios to their
portfolios to estimate and mitigate potential losses during market downturns. With the rise of
trading automation and technological advancements, there is a pressing need from both parties to
simulate more complex and high-dimensional financial scenarios (Reppen and Soner 2023). This
request challenges traditional model-based simulation approaches (Behn, Haselmann, and Vig 2022,
Hambly, Xu, and Yang 2023), highlighting the need for sophisticated data-driven techniques.

With the advances in machine learning techniques and computational power, generative AI has
become a transformative force and is increasingly popular in financial applications. Its capabilities
are now being harnessed for a wide range of tasks, such as generating financial time series (Yoon,
Jarrett, and Van der Schaar 2019, Cont et al. 2022, Brophy et al. 2023, Acciaio, Eckstein, and Hou
2024), modeling volatility surfaces (Vuletić and Cont 2025), simulating limit order book dynamics
(Coletta et al. 2023, Cont et al. 2023, Hultin et al. 2023), forecasting and imputing missing values
(Tashiro et al. 2021, Vuletić, Prenzel, and Cucuringu 2024), and constructing portfolio strategies
(Cetingoz and Lehalle 2025).

In recent years, generative adversarial networks (GANs) have been the primary workhorse for
generative AI in financial applications (Yoon, Jarrett, and Van der Schaar 2019, Cont et al. 2022,
Liao et al. 2024, Vuletić and Cont 2025, Cetingoz and Lehalle 2025). However, GANs are hin-
dered by several issues, including training instability, mode collapse, high computational costs, and
evaluation difficulties (Saatci and Wilson 2017, Borji 2019). In addition, developing a theoretical
understanding of GANs is challenging due to their minimax structure and complex training pro-
cess, which has hindered principled analysis and sustainable improvements since their inception
(Creswell et al. 2018, Gui et al. 2021).

More recently, diffusion models have gained traction as a superior alternative to GANs, offering
significant advantages in financial applications (Xiao, Kreis, and Vahdat 2022, Barancikova, Huang,
and Salvi 2024, Coletta et al. 2024). These models effectively capture complex data distributions
and demonstrate robust performance, ease of training, and enhanced stability and efficiency, making
them invaluable tools in advancing generative AI for finance. In addition, the diffusion model
framework is grounded in rigorous stochastic and statistical analysis (Chen et al. 2024, Tang and
Zhao 2024b, Gao, Zha, and Zhou 2024), providing a theoretically sound basis for incorporating
domain-specific properties, such as those in finance.

1.1 Our Work and Contributions

We develop a deep generative model based on diffusion models to simulate high-dimensional asset
returns that follow an unknown factor structure, which we term the diffusion factor model. The
returns of the d-dimensional assets are explained by the linear combination of k unknown common
factors (k ≪ d) and an idiosyncratic noise that varies from asset to asset (see Equation (8)). 1 We
develop the theory for our diffusion factor model and establish statistical guarantees of the error of

1

diffusion-generated returns, which overcomes the curse of dimensionality in the number of assets.
We also conduct numerical and empirical studies to demonstrate its practical relevance.

Our generative model is particularly relevant for the high-dimensional small data setting, a
classical challenge for medium- (e.g., daily) to low- (e.g., weekly or monthly) frequency return
data in finance. In empirical applications, the number of assets d often ranges from hundreds to
thousands, easily exceeding the number of available observations in a stationary period (Kan and
Zhou 2007, Nagel 2013, Gu, Kelly, and Xiu 2020). While machine learning is commonly perceived as
a “big data” tool, many core finance questions are hindered by the “small data” nature of economic
time series. Our model offers a methodology to tackle this challenge.

As a result, our diffusion factor model can be used to simulate realistic financial data for
potential applications in a wide range of important contexts, including asset pricing and factor
analysis across stock (Fama and French 1993, 2015), option (Büchner and Kelly 2022), bond (Kelly,
Palhares, and Pruitt 2023, Elkamhi, Jo, and Nozawa 2024), and cryptocurrency markets (Liu,
Tsyvinski, and Wu 2022), large-scale asset covariance estimation (Bickel and Levina 2008, Fan,
Liao, and Liu 2016, Ledoit and Wolf 2022), robust portfolio construction (DeMiguel et al. 2009,
Avramov and Zhou 2010, Fabozzi, Huang, and Zhou 2010, Tu and Zhou 2010, Jacquier and Polson
2011), and systematic and institutional risk management (Bisias et al. 2012, Cont et al. 2022, He,
Kou, and Peng 2022).

Our contributions are multi-fold. First, our diffusion factor model presents the first theoretical
integration of factor models with generative diffusion models. It fully exploits the structural prop-
erty of factor models, using observations of asset returns with heterogeneous idiosyncratic noises,
and without requiring prior knowledge of the exact factors. In particular, our framework addresses
the curse of dimensionality issue in the “small data” regime by achieving a sample complexity that
scales exponentially in the desired error, with an exponent that only depends on k instead of d.

Second, the success of the diffusion factor model hinges on accurately estimating Stein’s score
function, which we achieve by decomposing the score function via a time-varying projection into
a subspace component in a k-dimensional space and a linear component (Lemma 1). This de-
composition informs our neural network design—integrating denoising scheme, an encoder-decoder
structure, and skip connections—to efficiently approximate the score function (Theorem 1). We es-
tablish a statistical guarantee that the L2 error between the neural score estimator and the ground
truth is Õ(d

5
2n−

2
k+5) (Theorem 2), demonstrating that the dependence on the sample size n is

governed primarily by k rather than d, effectively mitigating the curse of dimensionality. 2

Third, we establish statistical guarantees for the errors in the generated return distribution
as well as the subspace recovery. The output return distribution of our diffusion factor model

is close to the true distribution in total variation distance, achieving an error of Õ(d
5
4n
− 1−δ(n)

2(k+5)),
where δ(n) vanishes as n grows. By applying singular value decomposition (SVD), we can also

achieve latent subspace recovery with an error of order Õ(d
5
4n−

1−δ(n)
k+5) (Theorem 3). These results

are achieved by the design of our sampling algorithm (Algorithm 1) and a novel analysis based
on matrix concentration inequalities and coupling argument of stochastic processes (Lemmas 2
and 3). Furthermore, our efficient sample complexities hold true under a mild Lipschitz assumption
(Assumption 3), demonstrating the generality of our analysis.

Fourth, numerical studies with synthetic data confirm that our diffusion factor model is capable
of simulating realistic return data. In addition, it leads to a significant performance gain in terms
of subspace recovery, especially in the “small data” regime when the number of samples is small
compared to the number of assets. This is possible because our model is capable of generating new

2

data with reliable mean and covariance estimates that are close to the ground truth.
Finally, empirical analysis of the U.S. stock market shows that data generated by our diffusion

factor model improves both mean and covariance estimation, leading to superior mean-variance
optimal portfolios and factor portfolios. Portfolios using diffusion-generated data consistently out-
perform traditional methods, including equal-weight and shrinkage approaches, with higher mean
returns and Sharpe ratios. In addition, factors estimated from the generated data capture inter-
pretable economic characteristics and the corresponding tangency portfolios exhibit higher Sharpe
ratios, effectively capturing systematic risk.

1.2 Related Literature

Our work is broadly related to two strands of the literature on factor models and diffusion models.

Factor Models. There is a vast econometric literature on factor models. Classic factor-based as-
set pricing models primarily focus on risk premium estimation, time-varying factors, model validity,
and factor structure interpretability. Recent methodological advances have pioneered techniques
for analyzing large, high-dimensional datasets, incorporating semiparametric estimation, robust
inference, machine learning techniques, and time-varying risk premiums (Ferson and Harvey 1991,
Connor, Hagmann, and Linton 2012, Feng, Giglio, and Xiu 2020, Gu, Kelly, and Xiu 2020, Raponi,
Robotti, and Zaffaroni 2020, Chen, Pelger, and Zhu 2024, Feng et al. 2024, Giglio, Xiu, and Zhang
2025). We refer interested readers to survey papers such as Fama and French (2004), Giglio, Kelly,
and Xiu (2022), Kelly, Xiu et al. (2023), and Bagnara (2024).

While we assume the (target) data distribution follows a factor model structure, the implemen-
tation and analysis of the diffusion models do not require observing the factors. In fact, our goal
is to uncover the latent low-dimensional factor space through the data generation process. This
is extremely valuable for financial applications, particularly in identifying effective factors, which
is often challenging using traditional methods, see, for example, Chen, Roll, and Ross (1986), Je-
gadeesh and Titman (1993), Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Pástor
and Stambaugh (2003), Yogo (2006), Adrian, Etula, and Muir (2014), Hou, Xue, and Zhang (2015),
He, Kelly, and Manela (2017), Lettau and Pelger (2020a) and Lettau and Pelger (2020b).

Diffusion Models and Their Theoretical Underpinnings. Diffusion models have shown
groundbreaking success and quickly become the state-of-the-art method in diverse domains (Yang
et al. 2023, Cao et al. 2024, Guo et al. 2024, Liu et al. 2024).

Despite significant empirical advances, the development of theoretical foundations for diffusion
models falls behind. Recently, intriguing statistical and sampling theories emerged for deciphering,
improving, and harnessing the power of diffusion models. Specifically, sampling theory considers
whether diffusion models can generate a distribution that closely mimics the data distribution,
given that the diffusion model is well-trained (De Bortoli et al. 2021, Chen et al. 2022b, De Bortoli
2022, Albergo, Boffi, and Vanden-Eijnden 2023, Chen, Daras, and Dimakis 2023, Benton et al.
2024, Huang, Huang, and Lin 2024, Li, Di, and Gu 2024, Li et al. 2024).

Complementary to sampling theory, statistical theory of diffusion models mainly concerns how
well the score function can be learned given finitely many training samples (Koehler, Heckett, and
Risteski 2022, Yang and Wibisono 2022, Oko, Akiyama, and Suzuki 2023, Chen et al. 2023, Dou
et al. 2024, Wibisono, Wu, and Yang 2024, Zhang et al. 2024). Later, end-to-end analyses in Chen
et al. (2023), Oko, Akiyama, and Suzuki (2023), Azangulov, Deligiannidis, and Rousseau (2024),

3

Fu et al. (2024), Tang and Yang (2024), Zhang et al. (2024), Yakovlev and Puchkin (2025) present
statistical complexities of diffusion models for estimating nonparametric data distributions. It is
worth noting that Oko, Akiyama, and Suzuki (2023), Chen et al. (2023), Azangulov, Deligiannidis,
and Rousseau (2024), Tang and Yang (2024), Wang et al. (2024) prove the adaptivity of diffusion
models to the intrinsic structures of data—they can circumvent the curse of ambient dimensionality
when data are exactly concentrated on a low-dimensional space.

Two works most closely related to ours are Chen et al. (2023) and Wang et al. (2024), both of
which consider subspace-structured data. Chen et al. (2023) assume that each data point X lies
exactly on a low-dimensional subspace, i.e., X = AZ for some unknown matrix A ∈ Rd×k and
latent variable Z ∈ Rk. In contrast, our factor model (Equation (8)) relaxes this strict subspace
assumption by allowing idiosyncratic noise in the asset returns. Wang et al. (2024) also consider
noisy subspace data, but assume that the latent variable Z follows a Gaussian mixture distribution.
By comparison, we only require that the distribution of the latent variable satisfies a general sub-
Gaussian tail condition. During the preparation of this manuscript, Yakovlev and Puchkin (2025)
generalize the study to noisy nonlinear low-dimensional data structures. They assume that the
data follow a transformation on a latent variable, which is uniformly distributed in a hypercube.
This is very different from our study on the factor model structure.

1.3 Notation

We denote vectors and matrices by bold letters. For a vector v, we denote ∥v∥2, ∥v∥∞ as its ℓ2

and ℓ∞ norm, respectively. For a matrix M, we denote tr(M), ∥M∥F and ∥M∥op as its trace,
Frobenius norm, and operator norm, respectively. When M is symmetric, we denote λmax(M)

and λk(M) as the maximal and the k-th largest eigenvalues. We also denote a matrix-induced
norm as ∥v∥2M = v⊤Mv. For two symmetric matrices, we associate a partial ordering M ⪰ N

if M − N is positive semi-definite. For a random vector X following distribution P , we denote
∥X∥2L2(P) = E[∥X∥22]. We denote ϕ(·;µ,Σ) as the Gaussian density function with mean µ and
covariance Σ.

2 Problem Set-up for Diffusion Factor Models

Given limited market data, our objective is to design and train a diffusion-based factor model
capable of simulating realistic, high-dimensional asset returns. This section introduces the two
core components of our approach: generative diffusion models and the underlying factor structure.
Section 2.1 defines diffusion models and emphasizes the central role of score functions in their
construction. Section 2.2 presents a framework for modeling high-dimensional asset returns with
an unknown low-dimensional latent structure, typically captured by a factor model—an essential
feature for enabling efficient and robust modeling in data-scarce environments.

2.1 Generative Diffusion Models

Diffusion models consist of two interconnected processes: a forward process progressively injects
noise into data over time, and a time-reverse process that constructs new data by progressively
removing noise (Anderson 1982, Haussmann and Pardoux 1986, Song and Ermon 2019, Ho, Jain,
and Abbeel 2020, Song et al. 2021). The forward process is employed during training, while the

4

time-reverse process is used for data generation. In the following, we formulate both processes using
stochastic differential equations (SDEs) and detail the training methodology for diffusion models.

Forward and Time-Reverse SDEs. For ease of theoretical analysis, we follow the convention in
the literature (Song and Ermon 2020, Ho, Jain, and Abbeel 2020) and adopt Ornstein-Ulhenbeck
(O-U) process for the forward process. In particular, we study a simple O-U process with a
deterministic and nondecreasing weight function η(t) > 0 as

dRt = −1

2
η(t)Rtdt+

√
η(t)dWt with R0 ∼ Pdata and t ∈ [0, T], (1)

where (Wt)t≥0 is a standard Wiener process, T is a terminal time and Pdata is the data distribu-
tion, i.e., the distribution of high-dimensional asset returns. We also denote Pt as the marginal
distribution of Rt with a corresponding density function pt. Given an initial value R0 = r, at time
t, the conditional distribution of Rt |R0 = r is Gaussian, i.e.,

Rt |R0 = r ∼ N (αtr, htId), (2)

where αt = exp
(
−
∫ t
0

1
2η(s)ds

)
is the shrinkage ratio and ht = 1− α2

t is the variance of the added
Gaussian noise. For simplicity, we take η(t) = 1 throughout the paper. Note that the terminal
distribution PT is close to P∞ = N (0, Id) when T is sufficiently large, since the marginal distribution
of an O-U process converges exponentially fast to its stationary distribution (Bakry et al. 2014,
Chen et al. 2022b).

To design a procedure to generate new samples, we reverse the forward process in time (Anderson
1982, Song et al. 2021). Under mild regularity conditions (Haussmann and Pardoux 1986), this
yields a well-defined backward process that transforms (white) noise into data. We denote the
time-reversed SDE (backward process) associated with (1) as

dR←t =

(
1

2
R←t +∇ log pT−t(R

←
t)

)
dt+ dWt with R←0 ∼ Q0 and t ∈ [0, T], (3)

where (Wt)t≥0 is another Wiener process independent of (Wt)t≥0, ∇ log pt(·) is known as the score
function and Q0 is the initial distribution of the backward process. If we set Q0 = PT , under mild
assumptions, the time-reverse process has the same marginal distribution as the forward process in
the sense of Law(R←t) = Law(RT−t); see Anderson (1982) and Haussmann and Pardoux (1986) for
details. In particular, we have Law(R←T) = Pdata, which leads us to recover the data distribution.

In practice, however, (3) cannot be directly used to generate samples from the data distribution
Pdata as both the score function and the distribution PT are unknown. To train a simulator that
generates data (closely) from Pdata, the key is to accurately learn the score function. With a score
estimator ps that approximates ∇ log pt and an initial distribution Q0 := N (0, Id) that is easy to
sample, we specify the following implementable process for data generation

dpR←t =

(
1

2
pR←t + ps

(
pR←t , T − t

))
dt+ dWt with pR←0 ∼ N (0, Id). (4)

For O-U processes, the error introduced by taking Q0 = N (0, Id) usually decays exponentially with
respect to T (Tang and Zhao 2024a, Chen et al. 2022b, Gao, Nguyen, and Zhu 2023, Lee, Lu, and
Tan 2023).

5

Training by Score Matching. To learn the score function ∇ log pt in (3), a natural method is
to minimize a mean-squared error between the estimated and true scores (Hyvärinen and Dayan
2005), i.e.,

min
s∈S

∫ T

t0

w(t)ERt

[
∥s(Rt, t)−∇ log pt(Rt)∥22

]
dt, (5)

where w(t) is a positive weighting function and s is a parameterized estimator of the score function
from a class S such as neural networks. Here, t0 > 0 is a small early-stopping time to prevent the
score function from blowing up as t→ 0 (Song and Ermon 2019, Chen et al. 2023).

A key challenge in minimizing the score-matching loss (5) is that the target term, ∇ log pt, is
generally intractable—it cannot be computed directly from observed data. Alternatively, one can
equivalently minimize the following denoising score matching proposed in Vincent (2011), Song
et al. (2020), which utilizes the conditional density of Rt |R0 in (2):

min
s∈S

∫ T

t0

w(t)ER0

[
ERt|R0

[
∥s(Rt, t)−∇ log ϕ(Rt;αtR0, htId)∥22

]]
dt. (6)

Here ϕ is the Gaussian density function defined at the end of Section 1. For technical conve-
nience, we choose a uniform weight w(t) = 1/(T − t0). Note that under the forward dynamics (1),
∇ log ϕ(rt;αtr0, htId) in (6) has an analytical form,

∇ log ϕ(rt;αtr0, htId) = −rt − αtr0
ht

.

In practice, we can only observe a finite sample of asset returns {ri}ni=1 from Pdata. Therefore, we
train the diffusion model using the following empirical score-matching objective:

min
s∈S

pL(s) := 1

n

n∑
i=1

ℓ(ri, s) with ℓ(ri, s) =
1

T − t0

∫ T

t0

ERt|R0=ri

∥∥∥s(Rt, t) +
Rt − αtr

i

ht

∥∥∥2
2
dt. (7)

Henceforth we write the population loss function in (6) as L(s) := E[pL(s)].

2.2 Asset Returns and Unknown Factor Structure

To improve sample efficiency, especially in data-scarce settings, the central idea is to incorporate
domain knowledge into the diffusion model. Specifically, we leverage a key insight from the finance
literature: a relatively small set of latent factors—reflecting both macroeconomic and firm-specific
variables—can effectively explain a broad class of asset returns (Ross 2013, Fan, Liao, and Wang
2016, Aït-Sahalia and Xiu 2019, Giglio and Xiu 2021, Bryzgalova et al. 2023, Kelly, Malamud, and
Pedersen 2023). Following these studies, we consider the asset return R ∼ Pdata satisfying the
following factor model structure:

R = βF+ ε, (8)

where F ∈ Rk are unknown factors with k ≪ d, β ∈ Rd×k is a factor loading matrix, and ε ∈ Rd is
the vector of idiosyncratic residuals.

We want to emphasize that, while we assume the data distribution Pdata follows a factor model
structure (8), the implementation and analysis of the diffusion models do not require observing the
factors. Instead, our approach is capable of uncovering the latent low-dimensional factor space
through the data generation process; see Section 5 for more details.

6

Under the unknown factor scenario, factors and their loadings are identifiable only up to an
invertible linear transformation, e.g., rescaling and rotation (Kelly, Xiu et al. 2023). Thus, it
is reasonable to assume that β has orthonormal columns. Otherwise, one can perform a QR
decomposition to write β = β′H, where β′ ∈ Rd×k has orthonormal columns and H ∈ Rk×k is an
upper triangular matrix.

In light of the factor structure in (8), we aim to develop a diffusion model framework that
explicitly exploits this low-dimensional representation. Crucially, the statistical guarantees of our
approach depend primarily on the number of latent factors k, rather than the ambient data di-
mension d. This dimensionality reduction enables the diffusion model to be trained effectively on
a limited number of observations, while still generating realistic high-dimensional samples. As a
result, the proposed framework addresses two central challenges in modeling financial data: the
curse of dimensionality and data scarcity.

3 Score Decomposition under Diffusion Factor Model

To simulate high-dimensional asset returns using diffusion factor models, the key challenge is ac-
curately learning the score function via neural networks. However, due to the high dimensionality
of asset returns and limited market data, directly estimating the score function is impractical as
it suffers from the curse of dimensionality. To overcome this, we analyze the structural properties
of score functions under factor models, deriving a tractable decomposition. This decomposition
informs a neural network architecture designed to perform effectively in small data regimes.

3.1 Score Decomposition

With factor model structure in (8), we show that the score function ∇ log pt can be decomposed
into a subspace score in a k-dimensional space and a complementary component, each possessing
distinct properties.

To ensure the decomposition is well-defined, we impose the following assumption.

Assumption 1 (Factor model). We assume the following conditions on the factor model (8):

(i) The factor loading β ∈ Rd×k has orthonormal columns.

(ii) The factor F ∈ Rk follows a distribution that has a density function denoted as pfac and has
a finite second moment, i.e.,

∫
∥f∥22 pfac(f)df <∞.

(iii) The residual ε is Gaussian with density ϕ(·;0, diag{σ21, σ22, . . . , σ2d}) and there exists a positive
constant σmax > 0 such that

σmax ≥ σ1 ≥ σ2 ≥ · · · ≥ σd > 0.

(iv) F and ε are independent.

As a result, R has a positive definite covariance matrix, defined as

Σ0 := E[RR⊤]− E[R]E[R]⊤. (9)

7

Next, for an arbitrary time t ∈ [0, T], we consider a linear subspace Vt spanned by the column

vectors of Λ
− 1

2
t β, with Λt defined as

Λt := diag
{
ht + σ21α

2
t , ht + σ22α

2
t , . . . , ht + σ2dα

2
t

}
. (10)

We further define Tt as the matrix of orthogonal projection onto Vt:

Tt := Λ
− 1

2
t βΓtβ

⊤Λ
− 1

2
t with Γt := (β⊤Λ−1t β)−1. (11)

Matrix Γt is well-defined as β⊤Λ−1t β is positive definite due to Assumption 1. The following lemma
presents the score decomposition.

Lemma 1. Suppose Assumption 1 holds. The score function ∇ log pt(r) can be decomposed into a
subspace score and a complement score as

∇ log pt(r) = TtΛ
1
2
t β · ∇ log pfact (β⊤Λ

1
2
t Tt ·Λ

− 1
2

t r)︸ ︷︷ ︸
Subspace score

−Λ
− 1

2
t (I−Tt) ·Λ

− 1
2

t r︸ ︷︷ ︸
Complement score

, (12)

where pfact (·) :=
∫
ϕ(·;αtf ,Γt)pfac(f)df and Λt, Γt, Tt are defined in (10) and (11).

For future convenience, we denote the subspace score as ssub : Rk × [0, T] → Rd and the
complement score as scomp : Rd × [0, T] → Rd:

ssub(z, t) := TtΛ
1
2
t β · ∇ log pfact (z), and (13)

scomp(r, t) := −Λ
− 1

2
t (I−Tt)Λ

− 1
2

t r. (14)

We defer the proof to Appendix A. A few discussions are in place.

Motivation and Consequence of Score Decomposition. Lemma 1 is proved by an orthogo-
nal decomposition on the rescaled noisy data Λ

−1/2
t r = Tt ·Λ−1/2t r+ (I−Tt) ·Λ−1/2t r, resembling

the approach in Chen et al. (2023) yet with a more sophisticated retreat. Note that the first com-
ponent Tt · Λ−1/2t r lies in Vt and the second component (I − Tt) · Λ−1/2t r is orthogonal to the
subspace. Although ssub and scomp are not orthogonal for a finite t, they dictate distinct behaviors
of the two components in the rescaled noisy data. Specifically, ssub is responsible for recovering the
distribution of low-dimensional factors, while scomp is progressively manipulating the covariance of
the generated returns to ensure a match with that of the heterogeneous noise.

Furthermore, Lemma 1 provides key insights into a parsimonious representation of the score
function. As can be seen, the subspace score only depends on a k-dimensional input, and the
complement score is linear, suggesting a dimension reduction in representing the score. Our designed
score network architecture in Section 3.2 utilizes this critical observation.

Dealing with Heterogeneous Noise. A fundamental challenge in our score decomposition
stems from the presence of heterogeneous noise, setting our approach apart from Chen et al. (2023).
Specifically, the perturbed data Rt consists of two sources of noise: 1) homogeneous noise from
the forward diffusion process with coordinate-wise variance ht and 2) heterogeneous residual noise
from the factor model. Notably, the combined noise remains heterogeneous, and at time t, the i-th

8

asset return is perturbed by Gaussian noise with variance ht+α2
tσ

2
i . To address this, we introduce

a time-dependent diagonal matrix Λ
− 1

2
t to normalize the noise variance. Accordingly, we project

Λ
− 1

2
t Rt onto the stretched subspace Vt, differing from the time-invariant projection used in Chen

et al. (2023). As a sanity check, suppose σ1 = · · · = σd → 0, i.e., homogeneous noise with variance
approaching zero, Lemma 1 asymptotically reduces to Chen et al. (2023, Lemma 1) as Tt → ββ⊤

and Λt → htI.

3.2 Choosing Score Network Architecture

When training a diffusion model, we parameterize the score function using neural networks, where a
properly chosen network architecture plays a vital role in effective training. The score decomposition
in Lemma 1 suggests a well-informed network architecture design. Before we introduce our network
architecture, we briefly summarize our notion of ReLU networks considered in this paper.

Let SReLU be a family of neural networks with ReLU activations determined by a set of hyper-
parameters L, M , J , K, κ, γ1, and γ2. Roughly speaking, L is the depth of the network, M is the
width of the network, J is the number of non-zero weight parameters, K is the range of network
output, κ is the largest magnitude of weight parameters, and γ1 as well as γ2 are both Lipschitz
coefficients as we detail below. Formally, considering that a score network takes noisy data r and
time t as input, we define SReLU as

SReLU(L,M, J,K, κ, γ1, γ2)

=
{
gζ(r, t) = WL · ReLU(· · ·ReLU(W1[z

⊤, t]⊤ + b1) · · ·) + bL with ζ := {Wℓ,bℓ}Lℓ=1 :

network width bounded by M, sup
r,t

∥gζ(r, t)∥2 ≤ K,

max{∥bℓ∥∞, ∥Wℓ∥∞} ≤ κ for ℓ = 1, . . . , L,

L∑
ℓ=1

(∥bℓ∥0 + ∥Wℓ∥0) ≤ J,

∥gζ(r1, t)− gζ(r2, t)∥2 ≤ γ1∥r1 − r2∥2 for any t ∈ (0, T],

∥gζ(r, t1)− gζ(r, t2)∥2 ≤ γ2|t1 − t2| for any r
}
,

(15)

where ReLU activation is applied entrywise, and each weight matrix Wℓ is of dimension dℓ × dℓ+1.
Correspondingly, the width of the network is denoted by M = maxℓ dℓ. The Lipschitz continuity
on gζ is often enforced by Lipschitz network training (Gouk et al. 2021) or induced by implicit bias
of the training algorithm (Bartlett et al. 2020, Soudry et al. 2018).

Now, using SReLU, we design our score network architecture by first rearranging terms in (12)
as

∇ log pt(r) = Λ−1t β

∫
αtf · ϕ(Γtβ

⊤Λ−1t r;αtf ,Γt)pfac(f) df∫
ϕ(Γtβ

⊤Λ−1t r;αtf ,Γt)pfac(f) df
−Λ−1t r

= αtΛ
−1
t β · ξ(β⊤Λ−1t r, t)−Λ−1t r, (16)

where ξ : Rk × [0, T] → Rk is defined as

ξ(z, t) :=

∫
f · ϕ(Γtz;αtf ,Γt)pfac(f) df∫
ϕ(Γtz;αtf ,Γt)pfac(f) df

for z ∈ Rk. (17)

9

The i-th element of ξ(z, t) is denoted as ξi(z, t). Note that the coefficient αt forces the first
term to decay exponentially. Therefore, for sufficiently large t, the score function ∇ log pt(r) is
approximately a linear function, corresponding to the second term in (16).

When choosing the score network architecture, we aim to reproduce the functional form in (16).
Accordingly, we define a class of neural networks built upon SReLU as

SNN(L,M, J,K, κ, γ1, γ2, σmax)

=
{
sθ(r, t) = αtDtV · gζ(V⊤Dtr, t)−Dtr with θ := {c,V, ζ},

c := [c1, c2, . . . , cd]
⊤ ∈ [0, σmax]

d, V ∈ Rd×kwith orthogonal columns,
Dt := diag

{
1/(ht + α2

t c1), . . . , 1/(ht + α2
t cd)

}
induced by c,

gζ ∈ SReLU(L,M, J,K, κ, γ1, γ2)
}
.

(18)

In (18), V represents the unknown factor loading β and Dt represents Λ−1t . The ReLU network
gζ is responsible for implementing ξ. When there is no confusion, we drop the hyper-parameters
and denote the network classes in (15) and (18) as SReLU and SNN, respectively.

We remark that the network family SNN can be viewed as a modification of the score networks
designed in Chen et al. (2023). Following a similar approach, we retain V⊤ and V as the linear
encoder and decoder, respectively, and incorporate −Dtr as a shortcut connection within the U-Net
framework (Ronneberger, Fischer, and Brox 2015). Different from Chen et al. (2023), we introduce
a time-dependent normalizing matrix Dt for denoising and error scaling, enabling the analysis of
denoised data Dtr. Furthermore, we set αt as the decay parameter aligned with the score function
in (16).

4 Score Approximation and Estimation

Given the score decomposition and score network architecture SNN, this section establishes two
intriguing properties: 1) with appropriate hyper-parameters, SNN can well approximate any score
function in the form (12), and 2) learning the score function within SNN leads to an efficient
sample complexity. Specifically, we establish an approximation theory to the score function in
Section 4.1. Building on the approximation guarantee, Section 4.2 derives bounds on the statistical
error, providing finite-sample guarantees for score estimation, where the sample complexity bounds
depend primarily on the number of factors k rather than ambient dimension d.

4.1 Theory of Score Approximation

The following assumptions on the factor distribution and score function are needed to establish our
score approximation guarantee.

Assumption 2 (Factor distribution). The density function for the factors, pfac(·), is non-negative
and twice continuously differentiable. In addition pfac(·) has sub-Gaussian tail, namely, there exist
constants B,C1, and C2 such that

pfac(f) ≤ (2π)−
k
2C1 exp(−C2∥f∥22/2) when ∥f∥2 ≥ B. (19)

Assumption 2 is commonly adopted in the high-dimensional statistics literature (Vershynin
2018, Wainwright 2019). We also need the following regularity assumption on the score function.

10

Assumption 3. The subspace score function ssub(z, t) is Ls-Lipschitz in z for any t ∈ [0, T].

The Lipschitz assumption on the score function is a standard assumption in the diffusion model
literature (Chen et al. 2022b, Lee, Lu, and Tan 2022, Han, Razaviyayn, and Xu 2024). Note that
Assumption 3 only requires the Lipschitz continuity for the subspace score. But it implies that
∇ log pt is Lipschitz with coefficient

(
Ls ·

ht+σ2
1α

2
t

ht+σ2
dα

2
t
+ 1

ht+σ2
dα

2
t

)
, which is in a similar spirit to the

condition proposed in Lee, Lu, and Tan (2022). As a concrete example, a Gaussian distribution
with a nondegenerate covariance satisfies Assumption 3.

Example 1 (Gaussian factors). Assume the factor F follows a nondegenerate Gaussian distribu-
tion, i.e.,

F ∼ N (0,Σ) with Σ = diag{ς1, . . . , ςk} ≻ 0. (20)

Then, an explicit calculation gives rise to

∇ log pt(r) = (−Λ−1t βΓt(Γt + α2
tΣ)−1)β⊤Λ

1
2
t Tt ·Λ

− 1
2

t r−Λ
− 1

2
t (I−Tt) ·Λ

− 1
2

t r.

Correspondingly, the subspace score ssub is written as

ssub(z, t) = (−Λ−1t βΓt(Γt + α2
tΣ)−1)z,

which is Lipschitz in z.

We state our theory of score approximation as follows.

Theorem 1. Suppose Assumptions 1-3 hold. Given an approximation error ϵ > 0, there exists a
network s̄θ ∈ SNN such that for any t ∈ [0, T], it presents an upper bound

∥sθ(·, t)−∇ log pt(·)∥L2(Pt) ≤
(
√
k + 1)ϵ

min{σ2d, 1}
. (21)

The configuration of the network architecture SNN satisfies

M = O
(
Tτ(1 + Ls)

k(1 + σkmax)ϵ
−(k+1)

(
log

1

ϵ
+ k
) k

2

)
, γ1 = 20k(1 + Ls)(1 + σ4max),

L = O
(
log

1

ϵ
+ k

)
, J = O

(
Tτ(1 + Ls)

k(1 + σkmax)ϵ
−(k+1)

(
log

1

ϵ
+ k
) k+2

2

)
, γ2 = 10τ,

K = O
(
(1 + Ls)(1 + σ4max)

(
log

1

ϵ
+ k

) 1
2
)
, κ = max

{
(1 + Ls)(1 + σ4max)

(
log

1

ϵ
+ k
) 1

2 , T τ
}
,

(22)
where

τ = sup
t∈[0,T],∥z∥∞≤

√
(1+σ2

max)(k+(log 1/ϵ))

∥∥∥∥ ∂∂tξ(z, t)
∥∥∥∥
2

with ξ defined in (17).

The proof is deferred to Appendix B.1. Below, we provide key insights offered by Theorem 1,
along with a proof sketch and a discussion of the main technical challenges.

Discussion on Network Architecture. In contrast to conventional neural network designs for
universal approximation, such as those in Yarotsky (2017), our network employs only Lipschitz func-
tions gζ rather than a broad family of unrestricted functions. As illustrated in (18), we incorporate

11

time t as an additional input, and the network size is determined solely by the k-dimensional space
due to the encoder-decoder architecture. Our results indicate that the error bound is determined
by k and remains free of the Lipschitz parameters γ1 and γ2.

Benign Dimension Dependence. As shown in (21), the approximation error depends on
min{σ2d, 1} and k, rather than d. It is important to note that our result is applicable for any times-
tamp t ∈ [0, T]. In contrast to Chen et al. (2023), the approximation error scales as (

√
k + 1)ϵ/ht,

which diverges as t approaches zero.

Technical Challenges and Proof Overview. One key challenge lies in approximating the
score function under the factor model (8) when data presents high-dimensional noise ε. To ad-
dress this challenge, we utilize the score function decomposition in (16) to separately approx-
imate the low-dimensional term ξ(z, t) and the noise-related term Λ

−1/2
t r. With the designed

network architecture in (18), the noise-related term can be perfectly captured by setting Dt =

Λ−1t . For the low-dimensional term, inspired by Chen et al. (2023), we provide an approxima-
tion based on a partition of Rk into a compact subset C = {z ∈ Rk : ∥z∥2 ≤ S} with a radius
S = O(

√
(1 + σ2max)(k + log(1/ϵ))) and its complement. Specifically, we construct a network gζ to

achieve an L∞ approximation guarantee within the set C×[0, T], and take gζ = 0 in the complement
of C × [0, T].

To construct gζ as an approximation to ξ(z, t) over the domain C× [0, T], we begin by forming a
uniform grid of hypercubes covering C×[0, T] and build local approximations within each hypercube.
For the i-th component ξi of ξ, we use a Taylor polynomial ḡi to obtain a local approximation
satisfying ∥ḡi−ξi∥∞ = O(ϵ) on each hypercube. Since ReLU networks can approximate polynomials
to arbitrary accuracy in the L∞ norm, we construct a network ḡζ,i that approximates ḡi within
error ϵ/2. By combining these approximations across all hypercubes, we obtain a network gζ that
achieves an L∞ approximation of ξ on C × [0, T].

Finally, the proof of Theorem 1 is completed by showing that the L2 approximation error
on the complement of C × [0, T] can be well controlled due to the sub-Gaussian tail property
assumed in Assumption 2. Note that the designed network architecture takes the form sθ(r, t) =

αtΛ
−1
t β gζ(β

⊤Λ−1t r, t)−Λ−1t r. See the details in Appendix B.1.

4.2 Theory of Score Estimation

We now turn to the estimation of score functions using a finite number of samples. With the score
function parameterized by SNN in (18), we can express the score matching objective as

psθ = argmin
sθ∈SNN

pL(sθ), (23)

where recall pL is defined in (7). Given n i.i.d. samples, we provide an L2 error bound for the neural
score estimator psθ. The result is presented in the following theorem.

Theorem 2. Suppose Assumptions 1-3 hold. We choose SNN in Theorem 1 with ϵ = n−
1−δ(n)
k+5 for

δ(n) = (k+10) log(logn)
2 logn . Given n i.i.d. samples from Pdata, with probability 1− 1

n , it holds that

1

T − t0

∫ T

t0

ERt∼Pt

[
∥psθ(Rt, t)−∇ log pt(Rt)∥22

]
dt = Õ

(
1

t0
(1 + σ2kmax)d

5
2k

k+10
2 n−

2−2δ(n)
k+5 log4 n

)
,

12

where Õ(·) omits factors associated with Ls and polynomial factors on log t0, log d, and log k.

Discussion on Convergence Rate. Unlike Chen et al. (2023), the convergence rate in Theo-
rem 2 depends not only on the intrinsic factor dimension k but also weakly on the asset return
dimension d. This polynomial dependency arises because the noise term ε spans the entire Rd space,
introducing a truncation error component that scales with d. Fortunately, this dependency does not
appear in the leading term n−

2−2δ(n)
k+5 , where δ(n) = (k+10) log logn

2 logn . This suggests that the conver-
gence rate is primarily dominated by the sample size n and the latent factor dimensionality k, rather
than the ambient dimensionality d. When n is sufficiently large, δ(n) becomes negligible, indicating
the squared L2 estimation error to converge at the rate of Õ

(
1
t0
(1 + σ2kmax)d

5
2k

k+10
2 n−

2
k+5 log4 n

)
.

Proof Sketch. The full proof is deferred to Appendix B.2; here, we present a sketch of the main
argument. The proof relies on a decomposition of the population loss L(psθ). Specifically, for any
a ∈ (0, 1), it holds that

L (psθ) ≤ Ltrunc (psθ)− (1 + a) pLtrunc (psθ)︸ ︷︷ ︸
(A)

+L (psθ)− Ltrunc (psθ)︸ ︷︷ ︸
(B)

+(1 + a) inf
sθ∈SNN

pL (sθ)︸ ︷︷ ︸
(C)

,

where Ltrunc is defined as

Ltrunc (sθ) :=

∫
ℓtrunc(r; sθ)pt(r)dr with ℓtrunc(r; sθ) := ℓ(r; sθ)1 {∥r∥2 ≤ ρ} ,

and a truncation radius ρ to be determined. Here, the term (A) captures the statistical error due
to finite (training) samples, while terms (B) and (C) represent sources of bias in the estimation
of the score function. Specifically, (B) captures the domain truncation error, while (C) accounts
for the approximation error of SNN. We bound terms (A), (B), and (C) separately. For term (A),
we utilize a Bernstein-type concentration inequality on a compact domain. In addition, we show
that the term (B) is non-leading for sufficiently large radius ρ, thanks to the sub-Gaussian tail
conditions. Then, we show that term (C) is bounded by the network approximation error (21) in

Theorem 1. To balance these three terms, we choose ρ = O(
√
d+ log n), a = n−

1−δ(n)
k+5 , and set SNN

in Theorem 1 with ϵ = n−
1−δ(n)
k+5 to obtain the desired result.

5 Theory of Distribution Estimation

This section establishes statistical guarantees for the estimation of high-dimensional return distri-
bution. Given the neural score estimator psθ in Theorem 2, we define the learned distribution pPt0

as the marginal distribution of pR←T−t0 in (4), starting from N (0, Id). To assess the quality of pPt0 ,
we examine two key aspects: the estimation error relative to the ground-truth distribution Pdata
and the accuracy of reconstructing the latent factor space.

We estimate the latent subspace using generated samples as described in Algorithm 1.
The following theorem shows that the simulated distribution and the recovered latent factor

subspace are accurate with high probability.

Theorem 3. Given the neural score estimator psθ in Theorem 2, we choose T = (4γ1+2)(1−δ(n))
k+5 log n

and t0 = n−
1−δ(n)
k+5 , where γ1 is the Lipschitz parameter in Theorem 1. Denote Eigen-gap(k) =

13

Algorithm 1 Sampling and Singular Value Decomposition (SVD)
Require: Score network psθ in Theorem 2, number of generated data m, and time t0 and T .
1: Generate m random samples {R1, . . . ,Rm} at early stopping time t0 via the backward process

(4).3

2: Perform SVD on sample covariance matrix:

pΣ0 :=
1

m− 1

m∑
i=1

(Ri − R̄)(Ri − R̄)⊤ with R̄ =
1

m

m∑
i=1

Ri. (24)

3: Obtain the largest k eigenvalues {pλ1, . . . , pλk} and the corresponding k-dimensional eigenspace
pU ∈ Rd×k.

4: return {R1, . . . ,Rm}, pΣ0, {pλ1, . . . , pλk}, and pU.

λk(Σ0) − λk+1(Σ0) with the covariance matrix of returns Σ0 defined in (9). Further denote U ∈
Rd×k as the k-dimensional leading eigenspace of Σ0. Then, the following two results hold.

1. Estimation of return distribution. With probability 1− 1/n, the total variation distance
between pPt0 and Pdata satisfies

TV
(
Pdata, pPt0

)
= Õ

(
(1 + σkmax)d

5
4k

k+10
4 n

− 1−δ(n)
2(k+5) log

5
2 n

)
.

2. Latent subspace recovery. Set m = Õ
(
λ−2max(Σ0)dn

2(1−δ(n))
k+5 log n

)
. For any 1 ≤ i ≤ k,

with probability 1− 1/n, it holds that∣∣∣∣∣λi(pΣ0)

λi(Σ0)
− 1

∣∣∣∣∣ = Õ

(
λmax(Σ0)(1 + σkmax)d

5
4k

k+10
4

λi(Σ0)
· n−

1−δ(n)
k+5 log

5
2 n

)
.

Meanwhile, the corresponding k-dimensional eigenspace can be recovered with

∥pUpU⊤ −UU⊤∥F = Õ

(
λmax(Σ0)(1 + σkmax)d

5
4k

k+12
4

Eigen-gap(k)
· n−

1−δ(n)
k+5 log

5
2 n

)
,

where recall that pU is the k-dimensional leading eigenspaces of pΣ0.

A few explanations are in line.

Trade-off on Early Stopping. The distribution estimation in Theorem 3 highlights a trade-off
associated with t0. Specifically, we can upper bound TV(Pdata, pPt0) by three terms

TV(Pdata, pPt0) ≤ TV(Pdata, Pt0) + TV(Pt0 , P̃t0) + TV(P̃t0 ,
pPt0), (25)

where P̃t0 is the distribution of pR←T−t0 , defined in (4), initialized with pR←0 ∼ PT . As shown in (25),
the latent distribution error TV(Pdata, pPt0) arises from early stopping, score network estimation, and
the mixing of forward process (1). As t0 increases, the score estimation error decreases according
to Theorem 2. As a result, the error term TV(Pt0 , P̃t0) decreases. However, the early stopping

14

error TV(Pdata, Pt0) increases due to the heavier injected Gaussian noise. Under a training horizon

of T = Õ(log n), the choice of t0 = n−
1−δ(n)
k+5 optimally balances the early stopping error and the

score estimation error.

Eigenspace Estimation using Generated Samples. The latent subspace estimation in The-
orem 3 shows that the subspace can be accurately recovered with high probability. Specifically,
generating Õ

(
dn

2(1−δ(n))
k+5 log n

)
samples from the trained diffusion model ensures that the eigenval-

ues and eigenspace of the sample covariance matrix pΣ0 closely approximate those of Σ0, with the
error proportional to the score estimation error. Moreover, if Eigen-gap(k) increases—indicating
an improvement in the factor model identification, then the estimation error of the k-dimensional
eigenspace decreases.

Further Discussion on Dimension Dependence. Our sample complexity bounds in Theo-
rem 3 circumvent the curse of ambient dimensionality d under very mild assumptions, namely,
score function being Lipschitz and the distribution of factors being sub-Gaussian. As a result,
these bounds characterize learning efficiency being adaptive to the subspace dimension k even in
the most challenging scenarios. In practical applications, however, data distributions often possess
more favorable regularity properties—such as higher-order smoothness in the score function or the
distribution of returns—which may lead to better learning efficiency compared to the theoretical
bound. While refining our bounds under such additional properties is beyond the scope of this
paper, we present comprehensive numerical results in Sections 6 and 7 to illustrate the strong
empirical performance of diffusion factor models, particularly in the “small data” regime.

Proof Sketch. The proof is deferred to Appendix C.1; here, we highlight its main ideas. The out-
line has two parts: (I) the key steps in establishing the distribution estimation result in Theorem 3,
and (II) the technical components for proving the latent subspace recovery results, emphasizing
novel coupling and concentration arguments.
(I) Estimation of return distribution. We bound each term in the decomposition (25) separately.

1. Term TV(Pdata, Pt0) is the early-stopping error. By direct calculations using the Gaussian
transition kernel, we show that it is bounded by O(dt0).

2. Term TV(Pt0 , P̃t0) captures the statistical estimation error. We apply Girsanov’s Theorem
(Karatzas and Shreve 1991, Theorem 5.1; Revuz and Yor 2013, Theorem 1.4) to show that
the KL divergence KL(Pt0 , P̃t0) is bounded by the L2 score estimation error developed in
Theorem 2. Further, by Pinsker’s inequality (Tsybakov 2009, Lemma 2.5), we convert the
KL divergence bound into a total variation distance bound.

3. Term TV(P̃t0 ,
pPt0) reflects the mixing error of the forward process (1). Using the data pro-

cessing inequality (Thomas and Joy 2006, Theorem 2.8.1), we show that it is a non-leading
error term of order Õ(exp(−T)).

(II) Latent subspace recovery. The crux is to bound the covariance estimation error ∥pΣ0 −Σ0∥op
by the following lemma.

15

Lemma 2. Assume the same assumptions as in Theorem 3 and take pΣ0 as the estimator in (24)
with m samples from Algorithm 1. It holds that, with probability at least 1− δ,

∥pΣ0 −Σ0∥op = O
(
λmax(Σ0)(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
. (26)

Here, m satisfies

m = O
(
λ−2max(Σ0)dn

2(1−δ(n))
k+5 log n

)
. (27)

The complete proof of Lemma 2 is deferred to Appendix C.2.1. Using Lemma 2 in combination
with Weyl’s theorem and Davis-Kahan theorem (Davis and Kahan 1970), we derive the desired
results for latent subspace recovery.

Proving Lemma 2 is similar to that for the estimation of return distribution. We upper bound
∥pΣ0 −Σ0∥op by∥∥pΣ0 −Σ0

∥∥
op ≤

∥∥Σ0 −Σt0

∥∥
op︸ ︷︷ ︸

(A)

+
∥∥Σt0 − Σ̃t0

∥∥
op︸ ︷︷ ︸

(B)

+
∥∥Σ̃t0 − qΣt0

∥∥
op︸ ︷︷ ︸

(C)

+
∥∥pΣ0 − qΣt0

∥∥
op︸ ︷︷ ︸

(D)

,

where Σt0 , Σ̃t0 , qΣt0 are the covariance of Pt0 , P̃t0 and pPt0 , respectively. Analogous to the upper
bound of the total variation distance in (25), term (A) corresponds to the early-stopping error;
term (B) captures the statistical estimation error; and term (C) reflects the mixing error. The
additional term (D) represents a finite-sample concentration error arising from the use of m samples
in Algorithm 1.

We bound each term separately. Term (A) can be bounded by direct calculations using the
Gaussian transition kernel; term (D) is bounded using matrix concentration inequalities (Vershynin
2018, Theorems 3.1.1 and 4.6.1). However, bounding terms (B) and (C) requires a novel analysis,
as small total variation distances TV(Pt0 , P̃t0) and TV(P̃t0 ,

pPt0) do not immediately imply small
error bounds on the covariance matrix. In fact, we show the following L2 bound based on a coupling
between two backward SDEs, which converts to bounds on (B) and (C).

Lemma 3. Assume the same assumptions as in Theorem 3. Consider the following coupled SDEs: dR←t =
(
1
2R
←
t +∇ log pT−t(R

←
t)
)
dt+ dW̄t, with R←0 ∼ PT ,

dpR←t =
(
1
2

pR←t + psθ(pR←t , T − t)
)
dt+ dW̄t, with pR←0 ∼ N (0, Id) or PT ,

(28)

where PT is the terminal distribution of the forward SDE (1). It holds that

E∥R←T−t0 − pR←T−t0∥
2
2 = O

(
(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
. (29)

The proof of Lemma 3 is deferred to Appendix C.2.2. By the Cauchy-Schwarz inequality
and Lemma 3, we bound ∥Σt0 − Σ̃t0∥op as well as ∥Σ̃t0 − qΣt0∥op by O

(√
E∥R←T−t0 − pR←T−t0∥

2
2 ·(√

E∥R←T−t0∥
2
2+
√

E
∥∥pR←T−t0

∥∥2
2

))
, where the second moments of R←T−t0 and R̂←T−t0 are clearly finite.

Putting together all the error terms, we complete the proof of Lemma 2.

Highlights of Technical Novelties. We further compare our Lemmas 2 and 3 to the closest
related work of Chen et al. (2023). In particular, our Lemma 2 gives an error bound for the

16

subspace estimation using generated samples from Algorithm 1. Due to the presence of noise ε, our
theoretical analysis is established in the entire d-dimensional space, while Chen et al. (2023) reduce
the analysis to the k-dimensional subspace. Thus, obtaining a weak dependence on d becomes more
challenging. We address this by establishing Lemma 3.

Furthermore, Lemma 3 quantifies the distributional discrepancy between the backward processes
governed by the true score function ∇ log pt and the neural score estimator psθ at time T−t0, thereby
linking the score estimation error to the distribution mismatch error. Unlike Chen et al. (2023),
which projects the time-reverse process onto a time-invariant subspace, our framework introduces
a time-varying latent subspace induced by Λ

−1/2
t β. This added complexity presents analytical

challenges in characterizing the relationship between Λ
−1/2
t βR←t and Λ

−1/2
t β pR←t . To address this,

we employ a coupling argument that enables a more generic analysis of the backward processes
R←T−t0 and pR←T−t0 in (3) and (4).

6 Numerical Study with Synthetic Data

In this section, we use our diffusion factor model to learn high-dimensional asset returns under a
synthetic factor model setup. We evaluate numerically its effectiveness in terms of recovering both
the latent subspace and the return distribution (as in Theorem 3).

To simulate a practically challenging scenario, we set the number of assets to be d = 211 = 2048

and the number of latent factors to be k = 16. Appendix D provides more details on how we
construct simulated returns. We denote µ and Σ as the ground truth mean and covariance matrix
of returns. Similarly, we denote µDiff and ΣDiff as the mean and covariance matrix estimated
using diffusion-generated data, and µEmp and ΣEmp as the empirical mean and covariance matrix
estimated using training data.

Latent Subspace Recovery. We compare the following two methods to recover the latent sub-
space:

1. Diff Method: Our proposed diffusion factor model—we first estimate the return distribution
using our diffusion factor model trained on the training dataset, then generate a large set of
new data, and finally apply principal component analysis (PCA) on the generated data to
estimate the eigenvalues and eigenspaces.

2. Emp Method: A naïve PCA method—we directly perform PCA on the training data and
extract the leading eigenvalues and eigenspaces.

We denote {λi}1≤i≤k as the top-k eigenvalues and UU⊤ as the leading k-dimensional principal
components of the ground-truth Σ. We perform SVD on ΣDiff (resp. ΣEmp) to extract the top-k
eigenvalues {λDiff

i }1≤i≤k (resp. {λEmp
i }1≤i≤k) and the leading k-dimensional principal components(

UU⊤
)
Diff (resp.

(
UU⊤

)
Emp).

To assess the accuracy of the eigenvalue estimation, we compute the ℓ1 relative error for Diff
Method and Emp Method as

Diff RE1 =
1

k

k∑
i=1

∣∣∣∣λDiff
i

λi
− 1

∣∣∣∣ and Emp RE1 =
1

k

k∑
i=1

∣∣∣∣∣λEmp
i

λi
− 1

∣∣∣∣∣ . (30)

17

To evaluate the recovery of the principal components, we compute the relative Frobenius norm
errors for the two methods as

Diff RE2 =

∥∥(UU⊤
)
Diff −UU⊤

∥∥
F

∥UU⊤∥F
and Emp RE2 =

∥∥∥(UU⊤
)
Emp −UU⊤

∥∥∥
F

∥UU⊤∥F
. (31)

Table 1 reports the errors in estimating the top-k eigenvalues (30) in Panel A and the errors
in recovering the k-dimensional principal components (31) in Panel B for Diff Method and Emp
Method, for a variety of sample sizes N = 29, 210, . . . , 213.

Table 1: Relative error of the estimated top-k eigenvalues (30) and k-dimensional principal com-
ponents (31) for varying sample sizes (standard deviations in parentheses).

Panel A: Eigenvalues

N Diff RE1 Emp RE1 Diff RE1/Emp RE1

29 = 512 0.144 (± 0.011) 0.160 0.898 (± 0.069)
210 = 1024 0.130 (± 0.008) 0.141 0.919 (± 0.056)
211 = 2048 0.116 (± 0.005) 0.121 0.957 (± 0.041)
212 = 4096 0.081 (± 0.004) 0.081 1.003 (± 0.047)
213 = 8192 0.069 (± 0.003) 0.067 1.024 (± 0.045)

Panel B: Principal Components

N Diff RE2 Emp RE2 Diff RE2/Emp RE2

29 = 512 0.247 (± 0.012) 0.274 0.901 (± 0.044)
210 = 1024 0.202 (± 0.006) 0.218 0.926 (± 0.028)
211 = 2048 0.153 (± 0.005) 0.159 0.960 (± 0.033)
212 = 4096 0.110 (± 0.004) 0.109 1.009 (± 0.036)
213 = 8192 0.085 (± 0.004) 0.084 1.012 (± 0.047)

Table 1 reveals the advantage of our method in small data regimes (N ≤ d), which is particularly
important for practical applications. In particular, when N ≤ 2048, Diff Method consistently
outperforms Emp Method, as shown by error ratios being statistically below 1. When there is enough
sample (N ≥ 4096), simply using empirical estimates suffices to yield good subspace recovery. It is
worth highlighting that N = 2048 corresponds to approximately 8 years of daily return observations
or 39 years of weekly return observations. It is rarely the case that one enjoys the luxury of having
that much data to estimate a factor model, because return distributions do not remain stable over
such a long period of time.

Generated Return Distribution. In Figure 1, we visualize the (empirical) return distribution
generated by our diffusion factor model (trained on 211 samples) for a few selected assets, which
is compared with direct sampling from the ground truth. With the same number of 211 samples,
Diff Method produces a smoother empirical distribution that more closely approximates the ground
truth. This suggests that our diffusion factor model may be more effective at capturing patterns
and regularities of the underlying distribution than direct sampling.

18

Figure 1: Examples of asset return distribution (the blue is constructed using output samples from
the diffusion model and the green is based on samples from the ground truth.)

(a) Asset with the largest variance. (b) Asset with the smallest variance.

(c) Asset with the largest mean. (d) Asset with the smallest mean.

7 Empirical Analysis

In this section, we apply our diffusion factor model to real-world data and evaluate its economic
relevance in constructing both mean-variance optimal portfolios (Zhou and Li 2000, DeMiguel et al.
2009) and factor portfolios (Giglio, Kelly, and Xiu 2022, Feng et al. 2023). Section 7.1 compares
mean-variance optimal portfolios derived from diffusion-generated data with those based on other
robust portfolio rules in the literature. Section 7.2 assesses the performance of factor portfolios
estimated using diffusion-generated data and benchmarks them against other prominent factor
models in the literature.

We use daily excess return data for U.S. stocks from May 1, 2001, to April 30, 2024.4 The
dataset is obtained from the Center for Research in Security Prices (CRSP), available through
Wharton Research Data Services. Appendix E provides more details on data preprocessing. We
adopt a five-year rolling-window approach to update the diffusion model annually. Specifically, on
May 1 of each year T , we update model parameters using training data from May 1 of year T − 5

to April 30 of year T . We test the model on data from May 1 of year T to April 30 of year T + 1

to evaluate out-of-sample performance.

7.1 Mean-Variance Optimal Portfolio

We follow the literature to consider the mean-variance optimization problem with a norm constraint
(DeMiguel et al. 2009) to yield a fully invested and reasonably diversified portfolio:

max
ω

ω⊤µ− η

2
ω⊤Σω, subject to ω⊤1 = 1 and ∥ω∥∞ ≤ 0.05, (32)

where ω denotes the portfolio weights, µ is the expected return in excess of the risk-free rate, Σ is
the covariance matrix, and η > 0 is the risk aversion parameter.

19

Methods of Portfolio Construction. We evaluate a series of portfolio construction methods
that differ in their data source (real observed data or diffusion-generated data) and in their esti-
mation techniques for the mean and covariance matrix. We first describe classical approaches that
rely solely on observed data.

1. EW: A simple strategy with equal weights on all risky assets. DeMiguel, Garlappi, and Uppal
(2009) have documented its surprisingly efficient and robust performance.

2. VW: A value-weighted strategy that assigns each asset a weight proportional to its market
capitalization relative to the total market capitalization in the dataset.

3. Real Emp+Real Emp: A baseline that directly uses the sample mean µEmp and sample co-
variance matrix ΣEmp as inputs to (32) to solve the optimal portfolio weights.

4. Real BS+Real Emp: A robust portfolio proposed by Jorion (1986) that utilizes a Bayes-Stein
shrinkage mean µBS:

µBS = (1− γBS) · µEmp + γBS · µgmv1d

to solve (32), where µgmv = 1⊤d Σ
−1
Empµd/1

⊤
d Σ
−1
Emp1d denotes the average excess return on

the sample global minimum-variance portfolio, and γBS is the shrinkage weight estimated by
Jorion (1986, Equation (17)). The covariance estimator is still the sample covariance ΣEmp.

5. Real OLSE+Real Emp: A robust portfolio proposed by Bodnar, Okhrin, and Parolya (2019)
that uses an Optimal Linear Shrinkage Estimator (OLSE) for high-dimensional mean µOLSE:

µOLSE = αOLSE · µEmp + βOLSE · 1d

to solve (32), where αOLSE and βOLSE are the shrinkage weights estimated by Jorion (1986,
Equations (6) and (7)). The covariance estimator is still the sample covariance ΣEmp.

6. Real Emp+Real LW: A robust portfolio proposed by Ledoit and Wolf (2003, 2004) that uses
a shrinkage covariance matrix ΣLW:

ΣLW = (1− γLW) ·ΣEmp + γLW · uId

to solve (32), where u = tr(ΣEmp)/d, and γLW is the shrinkage parameter estimated by Ledoit
and Wolf (2022, Equation (2.14)). The mean estimator is still the sample mean µEmp.

7. Real BS+Real LW: A robust portfolio that combines Bayes–Stein shrinkage mean µBS with
the shrinkage covariance ΣLW to solve (32).

8. Real OLSE+Real LW: A robust portfolio that combines OLSE mean µOLSE with the shrinkage
covariance ΣLW to solve (32).

We further consider six methods that rely on our diffusion-generated data.

9. Diff Emp+Diff Emp: It extends Real Emp+Real Emp by replacing the empirical mean and
covariance estimates with those obtained from diffusion-generated data.

10. Diff BS+Diff Emp: It extends Real BS+Real Emp by replacing the Bayes-Stein mean and
empirical covariance estimates with those obtained from diffusion-generated data.

20

11. Diff OLSE+Diff Emp: It extends Real OLSE+Real Emp by replacing the OLSE mean and
empirical covariance estimates with those obtained from diffusion-generated data.

12. Diff Emp+Diff LW: It extends Real Emp+Real LW by replacing the empirical mean and Ledoit-
Wolf covariance estimates with those obtained from diffusion-generated data.

13. Diff BS+Diff LW: It extends Real BS+Real LW by replacing the Bayes-Stein mean and Ledoit-
Wolf covariance estimates with those obtained from diffusion-generated data.

14. Diff OLSE+Diff LW: It extends Real OLSE+Real LW by replacing the OLSE mean and Ledoit-
Wolf covariance estimates with those obtained from diffusion-generated data.

Finally, we consider two additional hybrid methods.

15. Real Emp+Diff Emp: It uses the empirical mean estimated from real data and the empirical
covariance matrix estimated from diffusion-generated data to solve (32).

16. Diff Emp+Real Emp: It uses the empirical mean estimated from diffusion-generated data and
the empirical covariance matrix estimated from real data to solve (32).

Methods 9–14 serve as diffusion-based counterparts to Methods 3–8 to evaluate the benefits of
using diffusion-generated data in both mean and covariance estimation. Methods 15 and 16 are
hybrid approaches designed to understand the contribution of diffusion-generated data in mean and
covariance estimation, respectively.

Main Results. Target weights are updated annually on May 1 and rebalanced daily. Following
Kan and Zhou (2007), we set η = 3 and assume a transaction cost of 20 basis points. We also
examine other values of η and the scenario without transaction costs, and find similar results; see
Appendix E for details. Table 2 reports out-of-sample portfolio performance under scenarios with
transaction costs, including the average return (Mean), standard deviation (Std), Sharpe ratio (SR),
certainty equivalent return (CER, i.e., the objective value in (32)), maximum drawdown (MDD),
and turnover (TO). Figure 2 further shows the cumulative returns of different portfolios in log scale
with transaction costs.

Figure 2: Cumulative returns of different portfolios in log scale with transaction cost for η = 3.

21

Table 2: Performance of different portfolios with transaction costs for η = 3.
Method Mean Std SR CER MDD (%) TO

Methods based on real observed data

EW 0.096 0.221 0.433 0.022 58.807 3.273
VW 0.090 0.218 0.414 0.019 62.127 3.717
Real Emp+Real Emp 0.011 0.144 0.073 -0.021 39.327 38.120
Real BS+Real Emp 0.003 0.142 0.022 -0.027 40.017 37.344
Real OLSE+Real Emp 0.012 0.146 0.082 -0.020 45.209 38.112
Real Emp+Real LW 0.021 0.136 0.153 -0.007 32.213 32.143
Real BS+Real LW 0.013 0.135 0.094 -0.015 33.666 31.540
Real OLSE+Real LW 0.021 0.138 0.152 -0.007 43.520 32.417

Methods based on diffusion-generated data

Diff Emp+Diff Emp 0.153 0.192 0.797 0.098 43.651 17.507
Diff BS+Diff Emp 0.150 0.191 0.788 0.096 43.267 17.203
Diff OLSE+Diff Emp 0.150 0.191 0.786 0.095 43.236 17.168
Diff Emp+Diff LW 0.122 0.170 0.720 0.079 38.127 16.332
Diff BS+Diff LW 0.120 0.168 0.711 0.077 37.974 16.115
Diff OLSE+Diff LW 0.119 0.168 0.709 0.077 37.962 16.090

Methods based on both real observed data and diffusion-generated data

Diff Emp+Real Emp 0.019 0.170 0.111 -0.024 36.913 23.360
Real Emp+Diff Emp 0.090 0.148 0.608 0.057 34.729 16.752

First, using diffusion-generated data, Diff Emp+Diff Emp consistently outperforms by a large
margin all alternative methods in Mean, SR, and CER, with transaction costs. Other diffusion-
based methods also outperform their counterparts. In particular, Diff Emp+Diff Emp outperforms
EW by a large margin, achieving approximately twice the Sharpe ratio. This is a highly nontrivial
benchmark to beat, as shown by DeMiguel, Garlappi, and Uppal (2009), because all other methods
without diffusion-generated data fail to beat EW in terms of risk-adjusted returns.

Second, Diff Emp+Diff Emp outperforms both hybrid methods in risk-adjusted returns. Be-
tween them, Real Emp+Diff Emp beats Diff Emp+Real Emp, and both significantly outperform
sample-based methods including Real Emp+Real Emp and other classical shrinkage methods. This
result reflects improvements in both the mean and covariance estimation from diffusion-generated
data, but most of the improvements come from the improved covariance estimation, which is not
surprising given the very design of our diffusion factor model.

Finally, with diffusion-generated data, shrinkage estimates of both the mean and covariance
matrix are no longer necessary, as shown by the superior performance of Diff Emp+Diff Emp
compared with other diffusion-based shrinkage methods. Although the shrinkage estimates have
historically played an impactful role for robust portfolios, as shown by reviews in the literature
(Avramov and Zhou 2010, Bodnar, Okhrin, and Parolya 2022, Ledoit and Wolf 2022), our results
show that modern generative modeling techniques such as diffusion models may provide a simple
yet effective and robust way to deal with data scarcity.

22

7.2 Factor Portfolio

To further demonstrate the benefits of diffusion-generated data, we apply existing statistical meth-
ods on top of our diffusion-generated data to obtain factors and evaluate the performance of the
corresponding tangency portfolios.

Methods of Factor Estimation. We compare seven methods to estimate factors, where a
projection matrix is first estimated from either observed data or diffusion-generated data, and
then applied to test data to extract factors. Existing approaches that rely solely on observed data
include:

1. FF Method: Firm characteristics-based factors that includes the Fama and French (2015) five
factors: market (Mkt-RF), size (SMB), value (HML), profitability (RMW), and investment
(CMA), the momentum factor (MOM) of Carhart (1997), and the short-term and long-term
reversal factors (ST-Rev and LT-Rev).5

2. PCA Method: Perform PCA on observed training data to obtain a projection matrix WPCA.

3. POET Method: Principal Orthogonal complEment Thresholding (POET) proposed by Fan,
Liao, and Mincheva (2013), in which one computes a robust POET covariance estimator
Σ̂POET and then apply SVD to obtain the projection matrix WPOET.

4. RPPCA Method: Risk-premia PCA (RP-PCA) proposed by Lettau and Pelger (2020b), in
which one performs PCA on 1

n

∑n
i=1 rir

⊤
i +γRPPCAr̄r̄

⊤ to obtain a projection matrix WRPPCA,
where {ri}ni=1 denotes samples of asset returns, r̄ = 1

n

∑n
i=1 ri is the sample mean, and γRPPCA

is a tuning parameter.

Methods based on our diffusion factor model are implemented by applying the same factor estima-
tion procedures to diffusion-generated data, rather than to the observed training data:

5. Diff+PCA Method: It extends PCA Method by using diffusion-generated data.

6. Diff+POET Method: It extends POET Method by using diffusion-generated data.

7. Diff+RPPCA Method: It extends RPPCA Method by using diffusion-generated data.

Main Results. Next, we construct tangency portfolios that maximize the Sharpe ratio using the
extracted factors by solving the following optimization problem:

max
ω

ω⊤µfac√
ω⊤Σfacω

, subject to ω⊤1 = 1, (33)

where ω denotes the portfolio weights, and µfac and Σfac are the mean and covariance matrix of
the factors, respectively. Table 3 reports the Sharpe ratios of the tangency portfolios constructed
across varying numbers of factors.6

Methods based on our diffusion factor model consistently outperform FF Method and their cor-
responding PCA counterparts. In particular, Diff+PCA Method exceeds both FF Method and PCA
Method by a wide margin, achieving approximately three and five times their Sharpe ratios, re-
spectively. Furthermore, applying the robust methods of factor estimation proposed by Fan, Liao,

23

Table 3: Out-of-sample Sharpe ratios of factor tangency portfolio. The number of factors is set to
be 3, 5, 6, and 8, respectively.

Factors Diff+PCA Diff+POET Diff+RPPCA FF PCA POET RPPCA

3 1.805 1.841 1.985 0.648 0.402 0.872 0.631
5 2.158 2.178 2.367 0.726 0.453 0.930 1.250
6 2.322 2.339 2.550 0.861 0.528 1.356 1.701
8 2.631 2.739 2.810 0.881 0.673 1.463 1.892

and Mincheva (2013), Lettau and Pelger (2020b) to diffusion-generated data yields additional im-
provements in portfolio performance. These results highlight the effectiveness of diffusion-generated
factors in capturing systematic risk.

Finally, we assess whether diffusion-generated factors capture interpretable economic character-
istics by analyzing their correlations with firm characteristics-based factors. For each method based
on diffusion-generated data, Figure 3 reports the correlations between top eight factors estimated
using diffusion-based methods and traditional factors in FF Method. Diffusion-generated factors
exhibit notable correlations with traditional factors, with Mkt-RF, LT-REV, and MOM being the
three leading factors for all three methods.

Figure 3: Correlation between the top 8 factors obtained using diffusion-based methods and those
from the FF Method.

(a) Diff+PCA Method (b) Diff+POET Method (c) Diff+RPPCA Method

8 Conclusion

We propose a diffusion factor model that embeds the latent factor structure into generative diffusion
processes. To exploit the low-dimensional nature of asset returns, we introduce a time-varying score
decomposition via orthogonal projections and design a score network with an encoder-decoder
architecture. These modeling choices lead to a concise and structure-aware representation of the
score function.

On the theoretical front, we provide statistical guarantees for score approximation, score es-
timation, and distribution recovery. Our analysis introduces new techniques to address heteroge-
neous residual noise and time-varying subspaces, yielding error bounds that depend primarily on
the intrinsic factor dimension k, with only mild dependence on the ambient dimension d. These
results demonstrate that our framework effectively mitigates the curse of dimensionality in high-

24

dimensional settings.
Simulation studies confirm that the proposed method achieves more accurate subspace recovery

and smoother distribution estimation than classical baselines, particularly when the sample size is
smaller than the asset dimension. The generated data reliably capture the true mean and covariance
structure.

Finally, our empirical experiments on real data show that diffusion-generated data improves
mean and covariance estimation, leading to superior mean-variance optimal portfolios. Our ap-
proach consistently outperforms traditional methods, achieving higher Sharpe ratios. Additionally,
factors estimated from generated data exhibit interpretable economic characteristics, enabling tan-
gency portfolios that better capture systematic risk.

Notes
1The number of factors k varies from 1 to several dozen, balancing predictive power and economic interpretability

(Harvey, Liu, and Zhu 2016, Giglio, Liao, and Xiu 2021).
2It is worth noting that complete independence from d is unattainable due to idiosyncratic noise spanning the

full d-dimensional space. We achieve a mild polynomial dependence of the estimated score function on the ambient
dimension d from the residual noise.

3For practical implementation, we can use denoising diffusion probabilistic models (DDPM) discretization (Ho,
Jain, and Abbeel 2020). For i = 1, 2, . . . ,m,

Ri,tj−1 =
1

√
αtj

(Ri,tj + (1− αt)psθ(Ri,tj , tj)) +
1− αtj

αtj

ztj , with Ri,T ∼ N (0, Id),

where t0 < t1 < t2 · · · < tℓ = T and {zt}Tt=t0 are i.i.d. following N (0, Id).
4The U.S. Securities and Exchange Commission (SEC) mandated the conversion to decimal pricing for all U.S.

stock markets by April 9, 2001.
5These two factors are obtained from French’s data library https://mba.tuck.dartmouth.edu/pages/faculty/k

en.french/data_library.html.
6As noted by Kelly, Pruitt, and Su (2019), factor tangency portfolios may not be directly implementable, but

they serve as important theoretical benchmarks for evaluating mean–variance efficiency. Compared to mean–variance
portfolios, their generally higher Sharpe ratios may stem from two main sources. First, the relatively low dimension-
ality of the factor space compared to individual assets improves the stability of estimated means and covariances.
Second, the exclusion of transaction costs can further enhance performance. Similar observations have been made in
the literature; see Gu, Kelly, and Xiu (2020, 2021).

References

Acciaio, B., S. Eckstein, and S. Hou, 2024, Time-causal vae: Robust financial time series generator, arXiv
preprint arXiv:2411.02947 .

Acharya, V. V., R. Berner, R. Engle, H. Jung, J. Stroebel, X. Zeng, and Y. Zhao, 2023, Climate stress
testing, Annual Review of Financial Economics 15, 291–326.

Adrian, T., E. Etula, and T. Muir, 2014, Financial intermediaries and the cross-section of asset returns, The
Journal of Finance 69, 2557–2596.

Aït-Sahalia, Y., and D. Xiu, 2019, Principal component analysis of high-frequency data, Journal of the
American Statistical Association 114, 287–303.

Albergo, M. S., N. M. Boffi, and E. Vanden-Eijnden, 2023, Stochastic interpolants: A unifying framework
for flows and diffusions, arXiv preprint arXiv:2303.08797 .

Alexander, C., 2005, The present and future of financial risk management, Journal of Financial Econometrics
3, 3–25.

25

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Anderson, B. D., 1982, Reverse-time diffusion equation models, Stochastic Processes and their Applications
12, 313–326.

Avramov, D., and G. Zhou, 2010, Bayesian portfolio analysis, Annual Review of Financial Economics 2,
25–47.

Azangulov, I., G. Deligiannidis, and J. Rousseau, 2024, Convergence of diffusion models under the manifold
hypothesis in high-dimensions, arXiv preprint arXiv:2409.18804 .

Bagnara, M., 2024, Asset pricing and machine learning: a critical review, Journal of Economic Surveys 38,
27–56.

Bai, J., and S. Ng, 2002, Determining the number of factors in approximate factor models, Econometrica
70, 191–221.

Bai, J., and S. Ng, 2023, Approximate factor models with weaker loadings, Journal of Econometrics 235,
1893–1916.

Bakry, D., I. Gentil, M. Ledoux, et al., 2014, Analysis and geometry of Markov diffusion operators, volume
103 (Springer).

Barancikova, B., Z. Huang, and C. Salvi, 2024, Sigdiffusions: Score-based diffusion models for long time
series via log-signature embeddings, arXiv preprint arXiv:2406.10354 .

Bartlett, P. L., P. M. Long, G. Lugosi, and A. Tsigler, 2020, Benign overfitting in linear regression, Proceedings
of the National Academy of Sciences 117, 30063–30070.

Behn, M., R. Haselmann, and V. Vig, 2022, The limits of model-based regulation, The Journal of Finance
77, 1635–1684.

Benton, J., V. De Bortoli, A. Doucet, and G. Deligiannidis, 2024, Nearly d-linear convergence bounds for
diffusion models via stochastic localization, in Proceedings of the International Conference on Learning
Representations.

Bickel, P. J., and E. Levina, 2008, Regularized estimation of large covariance matrices, The Annals of
Statistics 36, 199 – 227.

Bisias, D., M. Flood, A. W. Lo, and S. Valavanis, 2012, A survey of systemic risk analytics, Annu. Rev.
Financ. Econ. 4, 255–296.

Bodnar, T., O. Okhrin, and N. Parolya, 2019, Optimal shrinkage estimator for high-dimensional mean vector,
Journal of Multivariate Analysis 170, 63–79.

Bodnar, T., Y. Okhrin, and N. Parolya, 2022, Optimal shrinkage-based portfolio selection in high dimensions,
Journal of Business & Economic Statistics 41, 140–156.

Borji, A., 2019, Pros and cons of GAN evaluation measures, Computer Vision and Image Understanding
179, 41–65.

Brophy, E., Z. Wang, Q. She, and T. Ward, 2023, Generative adversarial networks in time series: A systematic
literature review, ACM Computing Surveys 55, 1–31.

Bryzgalova, S., V. DeMiguel, S. Li, and M. Pelger, 2023, Asset-pricing factors with economic targets, Avail-
able at SSRN 4344837.

Büchner, M., and B. Kelly, 2022, A factor model for option returns, Journal of Financial Economics 143,
1140–1161.

Cao, H., C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li, 2024, A survey on generative diffusion
models, IEEE Transactions on Knowledge and Data Engineering .

Carhart, M. M., 1997, On persistence in mutual fund performance, The Journal of Finance 52, 57–82.
Cetingoz, A. R., and C.-A. Lehalle, 2025, Synthetic data for portfolios: A throw of the dice will never abolish

chance, arXiv preprint arXiv:2501.03993 .
Chazottes, J.-R., P. Collet, and F. Redig, 2019, Evolution of gaussian concentration bounds under diffusions,

arXiv preprint arXiv:1903.07915 .
Chen, L., M. Pelger, and J. Zhu, 2024, Deep learning in asset pricing, Management Science 70, 714–750.

26

Chen, M., K. Huang, T. Zhao, and M. Wang, 2023, Score approximation, estimation and distribution recovery
of diffusion models on low-dimensional data, in International Conference on Machine Learning , 4672–
4712, PMLR.

Chen, M., H. Jiang, W. Liao, and T. Zhao, 2022a, Nonparametric regression on low-dimensional manifolds
using deep relu networks: Function approximation and statistical recovery, Information and Inference:
A Journal of the IMA 11, 1203–1253.

Chen, M., X. Li, and T. Zhao, 2019, On generalization bounds of a family of recurrent neural networks,
arXiv preprint arXiv:1910.12947 .

Chen, M., W. Liao, H. Zha, and T. Zhao, 2020, Statistical guarantees of generative adversarial networks for
distribution estimation, arXiv preprint arXiv:2002.03938 9.

Chen, M., S. Mei, J. Fan, and M. Wang, 2024, Opportunities and challenges of diffusion models for generative
ai, National Science Review 11, nwae348.

Chen, N.-F., R. Roll, and S. A. Ross, 1986, Economic forces and the stock market, Journal of Business
383–403.

Chen, S., S. Chewi, J. Li, Y. Li, A. Salim, and A. R. Zhang, 2022b, Sampling is as easy as learning the score:
theory for diffusion models with minimal data assumptions, arXiv preprint arXiv:2209.11215 .

Chen, S., G. Daras, and A. Dimakis, 2023, Restoration-degradation beyond linear diffusions: A non-
asymptotic analysis for ddim-type samplers, in International Conference on Machine Learning , 4462–
4484, PMLR.

Coletta, A., S. Gopalakrishnan, D. Borrajo, and S. Vyetrenko, 2024, On the constrained time-series genera-
tion problem, Advances in Neural Information Processing Systems 36.

Coletta, A., J. Jerome, R. Savani, and S. Vyetrenko, 2023, Conditional generators for limit order book envi-
ronments: Explainability, challenges, and robustness, in Proceedings of the Fourth ACM International
Conference on AI in Finance, 27–35.

Connor, G., M. Hagmann, and O. Linton, 2012, Efficient semiparametric estimation of the fama–french
model and extensions, Econometrica 80, 713–754.

Cont, R., M. Cucuringu, J. Kochems, and F. Prenzel, 2023, Limit order book simulation with generative
adversarial networks, Available at SSRN 4512356 .

Cont, R., M. Cucuringu, R. Xu, and C. Zhang, 2022, Tail-GAN: Learning to simulate tail risk scenarios,
arXiv preprint arXiv:2203.01664 .

Creswell, A., T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, 2018, Generative
adversarial networks: An overview, IEEE signal processing magazine 35, 53–65.

Davis, C., and W. M. Kahan, 1970, The rotation of eigenvectors by a perturbation. iii, SIAM Journal on
Numerical Analysis 7, 1–46.

De Bortoli, V., 2022, Convergence of denoising diffusion models under the manifold hypothesis, arXiv preprint
arXiv:2208.05314 .

De Bortoli, V., J. Thornton, J. Heng, and A. Doucet, 2021, Diffusion schrödinger bridge with applications to
score-based generative modeling, Advances in Neural Information Processing Systems 34, 17695–17709.

DeMiguel, V., L. Garlappi, F. J. Nogales, and R. Uppal, 2009, A generalized approach to portfolio optimiza-
tion: Improving performance by constraining portfolio norms, Management Science 55, 798–812.

DeMiguel, V., L. Garlappi, and R. Uppal, 2009, Optimal versus naive diversification: How inefficient is the
1/n portfolio strategy?, The Review of Financial Studies 22, 1915–1953.

Dou, Z., S. Kotekal, Z. Xu, and H. H. Zhou, 2024, From optimal score matching to optimal sampling, arXiv
preprint arXiv:2409.07032 .

Eckerli, F., and J. Osterrieder, 2021, Generative adversarial networks in finance: an overview, arXiv preprint
arXiv:2106.06364 .

Elkamhi, R., C. Jo, and Y. Nozawa, 2024, A one-factor model of corporate bond premia, Management
Science 70, 1875–1900.

27

Fabozzi, F. J., D. Huang, and G. Zhou, 2010, Robust portfolios: contributions from operations research and
finance, Annals of Operations Research 176, 191–220.

Fama, E. F., and K. R. French, 1993, Common risk factors in the returns on stocks and bonds, Journal of
Financial Economics 33, 3–56.

Fama, E. F., and K. R. French, 2004, The capital asset pricing model: Theory and evidence, Journal of
Economic Perspectives 18, 25–46.

Fama, E. F., and K. R. French, 2015, A five-factor asset pricing model, Journal of Financial Economics 116,
1–22.

Fan, J., Y. Liao, and H. Liu, 2016, An overview of the estimation of large covariance and precision matrices,
The Econometrics Journal 19, C1–C32.

Fan, J., Y. Liao, and M. Mincheva, 2013, Large covariance estimation by thresholding principal orthogonal
complements, Journal of the Royal Statistical Society Series B: Statistical Methodology 75, 603–680.

Fan, J., Y. Liao, and W. Wang, 2016, Projected principal component analysis in factor models, Annals of
Statistics 44, 219.

Federal Reserve Board, 2023, 2023 stress test scenarios, https://www.federalreserve.gov/publication
s/2023-stress-test-scenarios.htm.

Feng, G., S. Giglio, and D. Xiu, 2020, Taming the factor zoo: A test of new factors, The Journal of Finance
75, 1327–1370.

Feng, G., J. He, N. G. Polson, and J. Xu, 2024, Deep learning in characteristics-sorted factor models, Journal
of Financial and Quantitative Analysis 59, 3001–3036.

Feng, G., L. Jiang, J. Li, and Y. Song, 2023, Deep tangency portfolio, Available at SSRN 3971274 .
Ferson, W. E., and C. R. Harvey, 1991, The variation of economic risk premiums, Journal of Political

Economy 99, 385–415.
Fu, H., Z. Yang, M. Wang, and M. Chen, 2024, Unveil conditional diffusion models with classifier-free

guidance: A sharp statistical theory, arXiv preprint arXiv:2403.11968 .
Gao, X., H. M. Nguyen, and L. Zhu, 2023, Wasserstein convergence guarantees for a general class of score-

based generative models, arXiv preprint arXiv:2311.11003 .
Gao, X., J. Zha, and X. Y. Zhou, 2024, Reward-directed score-based diffusion models via q-learning, arXiv

preprint arXiv:2409.04832 .
Giglio, S., B. Kelly, and D. Xiu, 2022, Factor models, machine learning, and asset pricing, Annual Review

of Financial Economics 14, 337–368.
Giglio, S., Y. Liao, and D. Xiu, 2021, Thousands of alpha tests, The Review of Financial Studies 34, 3456–

3496.
Giglio, S., and D. Xiu, 2021, Asset pricing with omitted factors, Journal of Political Economy 129, 1947–1990.
Giglio, S., D. Xiu, and D. Zhang, 2025, Test assets and weak factors, The Journal of Finance 80, 259–319.
Gouk, H., E. Frank, B. Pfahringer, and M. J. Cree, 2021, Regularisation of neural networks by enforcing

lipschitz continuity, Machine Learning 110, 393–416.
Gu, S., B. Kelly, and D. Xiu, 2020, Empirical asset pricing via machine learning, The Review of Financial

Studies 33, 2223–2273.
Gu, S., B. Kelly, and D. Xiu, 2021, Autoencoder asset pricing models, Journal of Econometrics 222, 429–450.
Gui, J., Z. Sun, Y. Wen, D. Tao, and J. Ye, 2021, A review on generative adversarial networks: Algorithms,

theory, and applications, IEEE transactions on knowledge and data engineering 35, 3313–3332.
Guo, Z., J. Liu, Y. Wang, M. Chen, D. Wang, D. Xu, and J. Cheng, 2024, Diffusion models in bioinformatics

and computational biology, Nature reviews bioengineering 2, 136–154.
Hambly, B., R. Xu, and H. Yang, 2023, Recent advances in reinforcement learning in finance, Mathematical

Finance 33, 437–503.
Han, Y., M. Razaviyayn, and R. Xu, 2024, Neural network-based score estimation in diffusion models:

Optimization and generalization, arXiv preprint arXiv:2401.15604 .

28

https://www.federalreserve.gov/publications/2023-stress-test-scenarios.htm
https://www.federalreserve.gov/publications/2023-stress-test-scenarios.htm

Harvey, C. R., Y. Liu, and H. Zhu, 2016, . . . and the cross-section of expected returns, The Review of
Financial Studies 29, 5–68.

Haussmann, U. G., and E. Pardoux, 1986, Time reversal of diffusions, The Annals of Probability 1188–1205.
He, X. D., S. Kou, and X. Peng, 2022, Risk measures: robustness, elicitability, and backtesting, Annual

Review of Statistics and Its Application 9, 141–166.
He, Z., B. Kelly, and A. Manela, 2017, Intermediary asset pricing: New evidence from many asset classes,

Journal of Financial Economics 126, 1–35.
Ho, J., A. Jain, and P. Abbeel, 2020, Denoising diffusion probabilistic models, Advances in Neural Informa-

tion Processing Systems 33, 6840–6851.
Hou, K., C. Xue, and L. Zhang, 2015, Digesting anomalies: An investment approach, The Review of Financial

Studies 28, 650–705.
Huang, D. Z., J. Huang, and Z. Lin, 2024, Convergence analysis of probability flow ode for score-based

generative models, arXiv preprint arXiv:2404.09730 .
Hultin, H., H. Hult, A. Proutiere, S. Samama, and A. Tarighati, 2023, A generative model of a limit order

book using recurrent neural networks, Quantitative Finance 23, 931–958.
Hyvärinen, A., and P. Dayan, 2005, Estimation of non-normalized statistical models by score matching.,

Journal of Machine Learning Research 6.
Jacquier, E., and N. Polson, 2011, Bayesian methods in finance, in The Oxford Handbook of Bayesian

Econometrics, chapter 9, 439–512 (Oxford University Press).
Jagannathan, R., and Z. Wang, 1996, The conditional capm and the cross-section of expected returns, The

Journal of Finance 51, 3–53.
Jegadeesh, N., and S. Titman, 1993, Returns to buying winners and selling losers: Implications for stock

market efficiency, The Journal of Finance 48, 65–91.
Jorion, P., 1986, Bayes-stein estimation for portfolio analysis, Journal of Financial and Quantitative analysis

21, 279–292.
Kan, R., and G. Zhou, 2007, Optimal portfolio choice with parameter uncertainty, Journal of Financial and

Quantitative Analysis 42, 621–656.
Karatzas, I., and S. Shreve, 1991, Brownian motion and stochastic calculus, volume 113 (Springer Science

& Business Media).
Kelly, B., S. Malamud, and L. H. Pedersen, 2023, Principal portfolios, The Journal of Finance 78, 347–387.
Kelly, B., D. Palhares, and S. Pruitt, 2023, Modeling corporate bond returns, The Journal of Finance 78,

1967–2008.
Kelly, B., D. Xiu, et al., 2023, Financial machine learning, Foundations and Trends® in Finance 13, 205–363.
Kelly, B. T., S. Pruitt, and Y. Su, 2019, Characteristics are covariances: A unified model of risk and return,

Journal of Financial Economics 134, 501–524.
Koehler, F., A. Heckett, and A. Risteski, 2022, Statistical efficiency of score matching: The view from

isoperimetry, arXiv preprint arXiv:2210.00726 .
Ledoit, O., and M. Wolf, 2003, Improved estimation of the covariance matrix of stock returns with an

application to portfolio selection, Journal of Empirical Finance 10, 603–621.
Ledoit, O., and M. Wolf, 2004, A well-conditioned estimator for large-dimensional covariance matrices,

Journal of Multivariate Analysis 88, 365–411.
Ledoit, O., and M. Wolf, 2022, The power of (non-) linear shrinking: A review and guide to covariance

matrix estimation, Journal of Financial Econometrics 20, 187–218.
Lee, H., J. Lu, and Y. Tan, 2022, Convergence for score-based generative modeling with polynomial com-

plexity, Advances in Neural Information Processing Systems 35, 22870–22882.
Lee, H., J. Lu, and Y. Tan, 2023, Convergence of score-based generative modeling for general data distribu-

tions, in International Conference on Algorithmic Learning Theory , 946–985, PMLR.
Lettau, M., and S. Ludvigson, 2001, Consumption, aggregate wealth, and expected stock returns, The

Journal of Finance 56, 815–849.

29

Lettau, M., and M. Pelger, 2020a, Estimating latent asset-pricing factors, Journal of Econometrics 218,
1–31.

Lettau, M., and M. Pelger, 2020b, Factors that fit the time series and cross-section of stock returns, The
Review of Financial Studies 33, 2274–2325.

Li, G., Y. Wei, Y. Chen, and Y. Chi, 2024, Towards non-asymptotic convergence for diffusion-based gener-
ative models, in The Twelfth International Conference on Learning Representations.

Li, R., Q. Di, and Q. Gu, 2024, Unified convergence analysis for score-based diffusion models with determin-
istic samplers, arXiv preprint arXiv:2410.14237 .

Liao, S., H. Ni, M. Sabate-Vidales, L. Szpruch, M. Wiese, and B. Xiao, 2024, Sig-wasserstein gans for
conditional time series generation, Mathematical Finance 34, 622–670.

Liu, H., T. Zhu, N. Jia, J. He, and Z. Zheng, 2024, Learning to simulate from heavy-tailed distribution via
diffusion model, Available at SSRN 4975931 .

Liu, Y., A. Tsyvinski, and X. Wu, 2022, Common risk factors in cryptocurrency, The Journal of Finance 77,
1133–1177.

Lyu, Z., X. Xu, C. Yang, D. Lin, and B. Dai, 2022, Accelerating diffusion models via early stop of the
diffusion process, arXiv preprint arXiv:2205.12524 .

Nagel, S., 2013, Empirical cross-sectional asset pricing, Annu. Rev. Financ. Econ. 5, 167–199.
Oko, K., S. Akiyama, and T. Suzuki, 2023, Diffusion models are minimax optimal distribution estimators,

arXiv preprint arXiv:2303.01861 .
Pástor, L., and R. F. Stambaugh, 2003, Liquidity risk and expected stock returns, Journal of Political

Economy 111, 642–685.
Raponi, V., C. Robotti, and P. Zaffaroni, 2020, Testing beta-pricing models using large cross-sections, The

Review of Financial Studies 33, 2796–2842.
Reppen, A. M., and H. M. Soner, 2023, Deep empirical risk minimization in finance: Looking into the future,

Mathematical Finance 33, 116–145.
Revuz, D., and M. Yor, 2013, Continuous martingales and Brownian motion, volume 293 (Springer Science

& Business Media).
Ronneberger, O., P. Fischer, and T. Brox, 2015, U-net: Convolutional networks for biomedical image seg-

mentation, in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th inter-
national conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 , 234–241, Springer.

Ross, S. A., 2013, The arbitrage theory of capital asset pricing, in Handbook of the fundamentals of financial
decision making: Part I , 11–30 (World Scientific).

Saatci, Y., and A. G. Wilson, 2017, Bayesian gan, Advances in Neural Information Processing Systems 30.
Schneider, T., P. E. Strahan, and J. Yang, 2023, Bank stress testing: Public interest or regulatory capture?,

Review of Finance 27, 423–467.
Shapiro, J., and J. Zeng, 2024, Stress testing and bank lending, The Review of Financial Studies 37, 1265–

1314.
Song, Y., and S. Ermon, 2019, Generative modeling by estimating gradients of the data distribution, Advances

in Neural Information Processing Systems 32.
Song, Y., and S. Ermon, 2020, Improved techniques for training score-based generative models, Advances in

Neural Information Processing Systems 33, 12438–12448.
Song, Y., S. Garg, J. Shi, and S. Ermon, 2020, Sliced score matching: A scalable approach to density and

score estimation, in Uncertainty in Artificial Intelligence, 574–584, PMLR.
Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, 2021, Score-based generative

modeling through stochastic differential equations, International Conference on Learning Representa-
tions .

Soudry, D., E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro, 2018, The implicit bias of gradient descent
on separable data, Journal of Machine Learning Research 19, 1–57.

30

Tang, R., and Y. Yang, 2024, Adaptivity of diffusion models to manifold structures, in International Con-
ference on Artificial Intelligence and Statistics, 1648–1656, PMLR.

Tang, W., and H. Zhao, 2024a, Contractive diffusion probabilistic models, arXiv preprint arXiv:2401.13115
.

Tang, W., and H. Zhao, 2024b, Score-based diffusion models via stochastic differential equations–a technical
tutorial, arXiv preprint arXiv:2402.07487 .

Tashiro, Y., J. Song, Y. Song, and S. Ermon, 2021, Csdi: Conditional score-based diffusion models for
probabilistic time series imputation, Advances in Neural Information Processing Systems 34, 24804–
24816.

Thomas, M., and A. T. Joy, 2006, Elements of information theory (Wiley-Interscience).
Tsybakov, A. B., 2009, Introduction to Nonparametric Estimation, first edition (Springer).
Tu, J., and G. Zhou, 2010, Incorporating economic objectives into bayesian priors: Portfolio choice under

parameter uncertainty, Journal of Financial and Quantitative Analysis 45, 959–986.
Tukey, J. W., 1962, The future of data analysis, in Breakthroughs in Statistics: Methodology and Distribution,

408–452 (Springer).
Vershynin, R., 2018, High-dimensional probability: An introduction with applications in data science, vol-

ume 47 (Cambridge university press).
Vincent, P., 2011, A connection between score matching and denoising autoencoders, Neural computation

23, 1661–1674.
Vuletić, M., and R. Cont, 2025, VOLGAN: A generative model for arbitrage-free implied volatility surfaces,

Applied Mathematical Finance 1–36.
Vuletić, M., F. Prenzel, and M. Cucuringu, 2024, Fin-GAN: Forecasting and classifying financial time series

via generative adversarial networks, Quantitative Finance 24, 175–199.
Wainwright, M. J., 2019, High-dimensional statistics: A non-asymptotic viewpoint , volume 48 (Cambridge

university press).
Wang, P., H. Zhang, Z. Zhang, S. Chen, Y. Ma, and Q. Qu, 2024, Diffusion models learn low-dimensional

distributions via subspace clustering, arXiv preprint arXiv:2409.02426 .
Wibisono, A., Y. Wu, and K. Y. Yang, 2024, Optimal score estimation via empirical bayes smoothing, arXiv

preprint arXiv:2402.07747 .
Xiao, Z., K. Kreis, and A. Vahdat, 2022, Tackling the generative learning trilemma with denoising diffusion

gans, in International Conference on Learning Representations (ICLR), Paper presented at ICLR 2022.
Yakovlev, K., and N. Puchkin, 2025, Generalization error bound for denoising score matching under relaxed

manifold assumption, arXiv preprint arXiv:2502.13662 .
Yang, K. Y., and A. Wibisono, 2022, Convergence in kl and rényi divergence of the unadjusted langevin

algorithm using estimated score, in NeurIPS 2022 Workshop on Score-Based Methods.
Yang, L., Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, 2023, Diffusion

models: A comprehensive survey of methods and applications, ACM Computing Surveys 56, 1–39.
Yarotsky, D., 2017, Error bounds for approximations with deep relu networks, Neural Networks 94, 103–114.
Yogo, M., 2006, A consumption-based explanation of expected stock returns, The Journal of Finance 61,

539–580.
Yoon, J., D. Jarrett, and M. Van der Schaar, 2019, Time-series generative adversarial networks, Advances

in Neural Information Processing Systems 32.
Zhang, K., H. Yin, F. Liang, and J. Liu, 2024, Minimax optimality of score-based diffusion models: Beyond

the density lower bound assumptions, arXiv preprint arXiv:2402.15602 .
Zhou, X. Y., and D. Li, 2000, Continuous-time mean-variance portfolio selection: A stochastic LQ framework,

Applied Mathematics and Optimization 42, 19–33.

31

A Omitted Proof in Section 3

In this section, we provide the formal proof of Lemma 1.
Proof of Lemma 1. By definition, the marginal distribution of Rt is

pt(r) =

∫
ϕ(r;αtr0, htId)︸ ︷︷ ︸

Gaussian transition kernel

pdata(r0)dr0

(i)
=

∫
ϕ(r;αt(βf + ε), htId)pfac(f)ϕ

(
ε;0,diag{σ21, σ22, . . . , σ2d}

)
dfdε.

Here, equality (i) invokes the factor model (8) to represent r0 and the independence between factor
and noise.

Since ε is Gaussian with uncorrelated entries, we can simplify pt as

pt(r) =

∫
1

(2πht)d/2
exp

(
−∥r− αt(βf + ε)∥22

2ht

) d∏
i=1

1√
2πσi

exp

(
− ε2i
2σ2i

)
pfac(f)dεidf

(i)
=

∫ d∏
i=1

1√
2π(ht + σ2i α

2
t)

exp

(
−([r− αtβf]i)

2

2(ht + σ2i α
2
t)

)
pfac(f)df

=

∫
1√

(2π)d det(Λt)
exp

−∥Λ−
1
2

t r− αtΛ
− 1

2
t βf∥22

2

 pfac(f)df , (A.1)

where (i) holds by completing the squares and integrating with respect to εi, and the last equality
holds by applying the formula of Λt in (10).

Now we define orthogonal decomposition of the rescaled returns Λ
− 1

2
t r into the subspace spanned

by Λ
− 1

2
t β and its complement:

Λ
− 1

2
t r = (I−Tt)Λ

− 1
2

t r+TtΛ
− 1

2
t r,

where Γt and Tt are defined in (11), respectively. Along with the fact that Tt(I−Tt) = 0, we can
rewrite pt(r) in (A.1) as

pt(r) =
(2π)−

d
2√

det(Λt)
exp

(
− ∥(I−Tt)Λ

− 1
2

t r∥22
2

)∫
exp

(
− ∥TtΛ

− 1
2

t r− αtΛ
− 1

2
t βf∥22

2

)
pfac(f)df .

(A.2)
Take the take gradient of log pt with respect to r using expression in (A.2), we obtain:

∇ log pt(r) = −Λ
− 1

2
t (I−Tt)

2Λ
− 1

2
t r

32

−

∫
Λ
− 1

2
t Tt(TtΛ

− 1
2

t r− αtΛ
− 1

2
t βf) exp

(
−∥TtΛ

− 1
2

t r−αtΛ
− 1

2
t βf∥22

2

)
pfac(f)df

∫
exp

(
−∥TtΛ

− 1
2

t r−αtΛ
− 1

2
t βf∥22

2

)
pfac(f)df

(i)
= −Λ

− 1
2

t (I−Tt)Λ
− 1

2
t r

−

∫
Λ−1t β(β⊤Λ

1
2
t TtΛ

− 1
2

t r− αtf) exp

(
−∥Λ

− 1
2

t β(β⊤Λ
1
2
t TtΛ

− 1
2

t r−αtf)∥22
2

)
pfac(f)df

∫
exp

(
−∥Λ

− 1
2

t β(β⊤Λ
1
2
t TtΛ

− 1
2

t r−αtf)∥22
2

)
pfac(f)df

(ii)
= − Λ

− 1
2

t (I−Tt) ·Λ
− 1

2
t r︸ ︷︷ ︸

scomp(r,t): Complement score

+TtΛ
1
2
t β · ∇ log pfact (β⊤Λ

1
2
t Tt ·Λ

− 1
2

t r)︸ ︷︷ ︸
ssub(β

⊤Λ
1
2
t Tt·Λ

− 1
2

t r,t): Subspace score

,

where (i) holds due to the fact that (I−Tt)
2 = I−Tt and the following straightforward calculation

by invoking the formula Tt in (11) and β⊤β = Ik:

TtΛ
− 1

2
t r− αtΛ

− 1
2

t βf = Λ
− 1

2
t βΓtβ

⊤Λ
− 1

2
t ·Λ−

1
2

t r− αtΛ
− 1

2
t βf = Λ

− 1
2

t β

(
β⊤Λ

1
2
t TtΛ

− 1
2

t r− αtf

)
.

In addition, (ii) follows the definition of pfact . □

B Omitted Proofs in Section 4

In this section, we provide proofs of Theorem 1, Theorem 2 and the lemmas used in the proof.

B.1 Proof of Theorem 1

Proof. Given the neural network architecture defined in (15), our goal is to construct a diagonal
matrix Dt = diag

{
1/(ht + α2

t c1), . . . , 1/(ht + α2
t cd)

}
∈ Rd induced by a vector c = (c1, . . . , cd) ∈

Rd, a matrix V ∈ Rd×k with orthonormal columns, and a ReLU network gζ(V
⊤Dtr, t) ∈ SReLU so

that sθ(r, t) serves as a good approximator to ∇ log pt(r). Thanks to the score decomposition in
(16), we choose Dt(σ1, . . . , σd) = diag{1/(ht+σ21α

2
t), . . . , 1/(ht+σ2dα

2
t)} and V = β. It remains to

choose neural network hyper-parameters to guarantee the desired approximation power.
Step 1: Approximation on C × [0, T]. Define C =

{
z ∈ Rk| ∥z∥2 ≤ S

}
as a k-dimensional ball

of radius S > 0, with the choice of

S = O(
√
(1 + σ2max)(k + log(1/ϵ))). (B.1)

On C × [0, T], we approximate the coordinate ξi separately for each i = 1, . . . , d. To ease the

33

analysis, we define the following linear transformation:

ξ′(y′, t′) := ξ(z, t) with y′ := (z+ S1)/(2S) and t′ := t/T (B.2)

such that the domain of C × [0, T] is transformed to be contained within [0, 1]k × [0, 1]. Therefore,
we can equivalently approximate ξ′i for each i = 1, . . . , d on the new domain [0, 1]k × [0, 1].

Recall that the subspace score ssub (z, t) is Ls-Lipschitz in z by Assumption 3. Then, by the
definition of ssub and ξ in (13) and (17), we derive that ξ(z, t) is 2(1+Ls)(1+σ

4
max)-Lipschitz in z.

Immediately, we obtain that ξ′(y′, t′) is 4S(1+Ls)(1+σ
4
max)-Lipschitz in y′; so is each coordinate ξi.

Denote Lz = 2(1 + Ls)(1 + σ4max).
Next, define

τ(S) := sup
t∈[0,T]

sup
z∈C

∥∥∥∥ ∂∂tξ (z, t)
∥∥∥∥
2

. (B.3)

Then for any y′ ∈ [0, 1]k, the Lipschitz constant of ξ′(y′, t′) with respect to t′ is bounded by Tτ(S).
Substituting the order of S in (B.1) into the upper bound of τ(S) in (B.32) in Lemma B.1, we have

τ(S) = O(Ls(1 + σ7max) poly k
3/2 log3/2(1/ϵ)). (B.4)

For notation simplicity, we abbreviate τ(S) as τ when there is no confusion.
Now we construct a partition of the product space [0, 1]k × [0, 1]. For the hypercube [0, 1]k, we

partition it uniformly into smaller, non-overlapping hypercubes, each with an edge length of e1.
Similarly, we partition the interval [0, 1] into non-overlapping subintervals, each of length e2. Here,
we take

e1 = O
(

ϵ

SLz

)
and e2 = O

(ϵ

Tτ

)
.

In addition, we denote N1 =
⌈

1
e1

⌉
, N2 =

⌈
1
e2

⌉
.

Let m = [m1, . . . ,mk]
⊤ ∈ {0, . . . , N1 − 1}k be a multi-index. We define a function ḡ′ : Rk+1 7→

Rk, with the i-th component g′i being

ḡ′i
(
y′, t′

)
=

∑
m,j=0,...,N2−1

ξ′i

(
m

N1
,
j

N2

)
Ψm,j

(
y′, t′

)
. (B.5)

Here Ψm,j (y
′, t′) is a partition of unity function. Specifically, we choose Ψm,j as a product of

coordinate-wise trapezoid functions:

Ψm,j

(
y′, t′

)
= ψ

(
3N2

(
t′ − j

N2

)) d∏
i=1

ψ

(
3N1

(
y′i −

mi

N1

))
,

34

where ψ is a one-demensional trapezoid function with the specific formula:

ψ(a) =


1, |a| < 1

2− |a|, |a| ∈ [1, 2]

0, |a| > 2

.

For any 1 ≤ i ≤ k, we claim that

1. ḡ′i defined in (B.5) can approximate ξi arbitrarily well as long as N1 and N2 are sufficiently
large;

2. ḡ′i can be well approximated by a ReLU neural network ḡ′ζ,i with a controllable error.

The above two claims can be verified using Lemma 10 in Chen et al. (2020), in which we substitute
the Lipschitz coefficients 4S(1 + Ls)(1 + σ4max) and Tτ of ξ′ into the error analysis. Specifically,
for any 1 ≤ i ≤ k, we consider the ReLU neural network ḡ′ζ,i that satisfies the following Lipschitz
property:

∥∥ḡ′ζ,i (y′1, t′)− ḡ′ζ,i
(
y′2, t

′)∥∥
∞ ≤ 10kSLz

∥∥y′1 − y′1
∥∥
2
, ∀ y′1,y

′
1 ∈ [0, 1]k, t′ ∈ [0, 1], and∥∥ḡ′ζ,i (y′, t′1)− ḡ′ζ,i

(
y′, t′2

)∥∥
∞ ≤ 10Tτ ∥t1 − t2∥2 ,∀ t

′
1, t
′
2 ∈ [0, 1],y′ ∈ [0, 1]k.

By concatenating ḡ′ζ,i’s together, we construct gζ = [ḡζ,1, . . . , ḡζ,k]
⊤. For a given error level ϵ > 0,

with a neural network configuration

M = O

(
Tτ(Ls + 1)k(1 + σkmax)ϵ

−(k+1)

(
log

1

ϵ
+ k

) k
2

)
, γ1 = 20k(1 + Ls)(1 + σ4max),

L = O
(
log

1

ϵ
+ k

)
, J = O

(
Tτ(1 + Ls)

k(1 + σkmax)ϵ
−(k+1)

(
log

1

ϵ
+ k

) k+2
2

)
, γ2 = 10τ,

K = O
(
(1 + Ls)(1 + σ4max)

(
log

1

ϵ
+ k

) 1
2
)
, κ = max

{
(1 + Ls)(1 + σ4max)

(
log

1

ϵ
+ k

) 1
2

, T τ

}
,

we have
sup

(y′,t′)∈[0,1]k×[0,1]

∥∥g′ζ(y′, t′)− ξ′(y′, t′)
∥∥
∞ ≤ ϵ.

To transform the function g′ζ back to domain C × (0, T], we define

gζ(z, t) := g′ζ(y
′, t′)1{∥z∥2 ≤ S}. (B.6)

By the definition of ξ′ in (B.2), we deduce that

sup
(z,t)∈C×[0,T]

∥∥gζ(z, t)− ξ(z, t)
∥∥
∞ ≤ ϵ. (B.7)

35

Also by the variable transformation in (B.2), we obtain that gζ is Lipschitz continuous in z and t.
Specifically, for any z1, z2 ∈ C and t ∈ [0, T], it holds that

∥∥gζ (z1, t)− gζ (z2, t)
∥∥
∞ ≤ 10kLz ∥z1 − z2∥2 .

In addition, for any t1, t2 ∈ [0, T] and z ∈ C, it holds that

∥∥gζ (z, t1)− gζ (z, t2)
∥∥
∞ ≤ 10τ |t1 − t2|.

By definition of gζ in (B.6), we have gζ (z, t) = 0 for ∥z∥2 > S. Therefore, the Lipschitz continuity
property in z can be extended to Rk.

Step 2: Bounding L2 Approximation Error. Denote Z = β⊤Λ−1t Rt with the distribution
P fac
t . The L2 approximation error of gζ can be decomposed into two terms

∥∥ξ (Z, t)− gζ (Z, t)
∥∥
L2(P fac

t) =
∥∥(ξ (Z, t)− gζ (Z, t)

)
1{∥Z∥2 < S}

∥∥
L2(P fac

t)

+ ∥ξ (Z, t)1{∥Z∥2 > S}∥L2(P fac
t) .

(B.8)

By applying the L∞ approximation error bound in (B.7), the first term in (B.8) is bounded by

∥∥(ξ (Z, t)− gζ (Z, t)
)
1{∥Z∥2 < S}

∥∥
L2(P fac

t)
≤

√
k sup
(z,t)∈C×[0,T]

∥∥(ξ (z, t)− gζ (z, t)
)∥∥
∞ ≤

√
kϵ.

(B.9)
The second term on the right-hand side of (B.8) is controlled by the upper bound (B.38) in Lemma
B.2. Specifically, by choosing S = O(

√
(1 + σ2max)(k + log(1/ϵ))), we have

∥ξ (Z, t)1{∥Z∥2 > S}∥L2(P fac
t) ≤ ϵ. (B.10)

Combining (B.9) and (B.10), we deduce that

∥∥ξ (Z, t)− gζ (Z, t)
∥∥
L2(P fac

t) ≤ (
√
k + 1)ϵ. (B.11)

Furthermore, by involving ḡζ , we construct the following approximator sθ for ∇ log pt(r)

sθ(r, t) := αtΛ
−1
t βgζ(β

⊤Λ−1t r, t)−Λ−1t r. (B.12)

Then, by applying the formula of ∇ log pt and sθ in (16) and (B.12) respectively, we obtain that

∥∇ log pt(·)− sζ(·, t)∥L2(Pt) =
∥∥∥αtΛ

−1/2
t β(ξ(Z, t)− gζ(Z, t))

∥∥∥
L2(P fac

t)
≤ (

√
k + 1)ϵ

min{σ2d, 1}
,

where the inequality invokes ∥Λ−1t β∥op ≤ 1/(ht + σ2dα
2
t) ≤ 1/min{σ2d, 1} and the error bound

(B.11). □

36

B.2 Proof of Theorem 2

Proof.

Step 1: Error Decomposition. The proof is based on the following bias-variance decomposition
on L (psθ). For any a ∈ (0, 1), we decompose L (psθ) as

L (psθ) = L (psθ)− (1 + a) pL (psθ) + (1 + a) pL (psθ)

≤ Ltrunc (psθ)− (1 + a) pLtrunc (psθ)︸ ︷︷ ︸
(A)

+L (psθ)− Ltrunc (psθ)︸ ︷︷ ︸
(B)

+(1 + a) inf
sθ∈SNN

pL (sθ)︸ ︷︷ ︸
(C)

,

where Ltrunc is defined as

Ltrunc (sθ) :=

∫
ℓtrunc(r; sθ)pt(r)dr with ℓtrunc(r; sθ) := ℓ(r; sθ)1 {∥r∥2 ≤ ρ} (B.13)

subject to some truncation radius ρ to be determined.
In the sequel, we bound (A) – (C) separately. The term (A) is the statistical error due to finite

samples, term (B) is the truncation error, term (C) reflects the approximation error of SNN.
Note that the introduction of the hyper-parameter a > 0 (to be determined) is to handle the bias

by applying Bernstein’s concentration inequality (Chen et al. 2023, Lemma 15). Conversely, setting
a = 0 results in a convergence rate at O(n−1/2), as derived using only Hoeffding’s concentration
inequality.

Step 2: Bounding Term (A). We denote G :=
{
ℓtrunc (·; sθ) : sθ ∈ SNN

}
as the class of loss func-

tions induced by the score network SNN. We first determine an upper bound on all functions in G
by bounding supsθ∈SNN

supr∈Rd |ℓtrunc(r; sθ)|.
To start, we consider∥∥∥∥sθ(r′, t) + (r′ − αtr)

ht

∥∥∥∥
2

≤ ∥sθ(r′, t) +Dtr
′∥2 +

∥∥∥∥(I− htDt)r
′

ht

∥∥∥∥
2

+

∥∥∥∥αtr

ht

∥∥∥∥
2

(i)
= αt∥DtVgθ(V

⊤Dtr
′, t)∥2 +

∥I− htDt∥2∥r′∥2
ht

+
αt∥r∥2
ht

= O
(
K + ∥r′∥2 + ∥r∥2

ht

)
, (B.14)

where (i) holds by applying the formula of sθ in (18) and (ii) follows from the facts that α2
t ≤ 1,

∥Dt∥op ≤ 1/ht, ∥V∥op = 1, and ∥gθ∥2 ≤ K.
By the definition of ℓtrunc in (B.13), for any sθ ∈ SNN we have ℓtrunc(r; sθ) = 0 if ∥r∥2 > ρ. For

any ∥r∥2 ≤ ρ, we have

ℓtrunc(r; sθ) =
1

T − t0

∫ T

t0

ERt|R0=r

∥∥∥∥sθ(Rt, t) +
Rt − αtr

ht

∥∥∥∥2
2

· 1 {∥r∥2 ≤ ρ} dt

37

(i)
= O

(
1

T − t0

∫ T

t0

ERt|R0=r

(
K2 + ∥Rt∥22 + ∥r∥22

h2t

)
· 1 {∥r∥2 ≤ ρ} dt

)
(ii)
= O

(
1

T − t0

∫ T

t0

(
2ρ2 +K2

h2t
+
d

ht

)
dt

)
= O

(
ρ2 +K2

t0 (T − t0)
+

d

T − t0
log

T

t0

)
,

where (i) holds by the uniform upper bound (B.14); (ii) holds by applying the facts that (Rt|R0 =

r) ∼ N (αtr, htId) and ∥r∥2 ≤ ρ and α2
t ≤ 1.

To bound term (A), it is essential to consider the covering number of SNN, as it measures the
approximation power of the neural network class. Take sθ1 and sθ2 such that

sup
∥r′∥2≤3ρ+

√
d log d,t∈[t0,T]

∥∥sθ1(r′, t)− sθ2(r
′, t)
∥∥
2
≤ ι,

we then have

∥∥ℓtrunc (·; sθ1)− ℓtrunc (·; sθ2)
∥∥
∞

= sup
∥r∥2≤ρ

1

T − t0

∫ T

t0

ERt|R0=r

[
∥sθ1 (Rt, t)− sθ2 (Rt, t)∥2 ·

∥∥∥∥sθ1 (Rt, t) + sθ2 (Rt, t) +
2(Rt − αtr)

ht

∥∥∥∥
2

]
dt

(i)

≤ sup
∥r∥2≤ρ

1

T − t0

∫ T

t0

ERt|R0=r

[
2

ht
(K + ∥Rt∥2 + ∥r∥2) ∥sθ1 (Rt, t)− sθ2 (Rt, t)∥2

·1
{
∥Rt∥2 ≤ 3ρ+

√
d log d

}]
dt

+ sup
∥r∥2≤ρ

1

T − t0

∫ T

t0

ERt|R0=r

[
2

ht
(K + ∥Rt∥2 + ∥r∥2) ∥sθ1 (Rt, t)− sθ2 (Rt, t)∥2

·1
{
∥Rt∥2 > 3ρ+

√
d log d

}]
dt

(ii)

≤ sup
∥r∥2≤ρ

2ι

T − t0

∫ T

t0

ERt|R0=r

[
1

ht
(K + ∥Rt∥2 + ∥r∥2) · 1

{
∥Rt∥2 ≤ 3ρ+

√
d log d

}]
dt

+ sup
∥r∥2≤ρ

1

T − t0

∫ T

t0

ERt|R0=r

[
2

ht
(K + ∥Rt∥2 + ∥r∥2) ∥sθ1 (Rt, t)− sθ2 (Rt, t)∥2

·1
{
∥Rt∥2 > 3ρ+

√
d log d

}]
dt,

where (i) follows from applying the upper bound in (B.14) and decomposing the error into two
parts: within the compact domain of radius 3ρ+

√
d log d, and outside this domain; (ii) holds since

∥sθ1(r′, t)− sθ2(r
′, t)∥2 ≤ ι in the compact domain ∥r′∥ ≤ 3ρ+

√
d log d. Then, we deduce that

∥ℓtrunc(·; sθ1)− ℓtrunc(·; sθ2)∥∞
(i)
= O

(
2ι

T − t0

∫ T

t0

K +
√
htd+ 2ρ

ht
dt+

2

T − t0

∫ T

t0

1

ht

(
ρK2h

− d+4
2

t

(ρ
d

)d
exp

(
− ρ2

ht

))
dt

)

38

(ii)
= O

(
ι · (ρ+K) log(T/t0) +

√
d(
√
T −

√
t0)

T − t0
+ ρK2

(ρ
d

) d
2
exp

(
− ρ2

2hT

))
,

where (i) holds by applying (Rt|R0 = r) ∼ N (αtr, htId), ∥r∥2 ≤ ρ and the upper bound (B.43) in
Lemma B.3; (ii) follows from the facts that ht = O(t) as t → 0 and the second term in (i) has a
dominating exponential decay rate exp(−ρ2/ht). For notational simplicity, we denote

η := ρK2(ρ/d)d/2 exp(−ρ2/(2hT)). (B.15)

Denote the τ -covering number of a class of functions H under a metric Ψ(·) by

N(τ,H,Ψ(·)) = inf{|H1| : H1 ⊆ H, ∀h ∈ H, ∃h1 ∈ H, s.t. Ψ(h, h1) ≤ τ}, (B.16)

where |H1| represents the number of functions in the class H1. Immediately, we can deduce that
an ι-covering of SNN induces a covering of G with an accuracy ι · (ρ+K) log(T/t0)+

√
d(
√
T−
√
t0))

T−t0 +η. To
apply Bernstein-type concentration inequality (Chen et al. 2023, Lemma 15) for ℓtrunc (·; sθ), let us
take B = O(ρ

2+K2+t0d log(T/t0)
t0(T−t0)), τ = ι and the corresponding covering number of SNN as

N

(
(ι− η)(T − t0)

(ρ+K) log(T/t0) +
√
d(
√
T −

√
t0))

,SNN, ∥ · ∥2
)

Then by Lemma 15 of Chen et al. (2023), with probability 1− δ, it holds that

(A) = O

(1 + 3
a)
(ρ2+K2+t0d log(

T
t0

)

t0(T−t0)
)

n
log

N
(

(ι−η)(T−t0)
(ρ+K) log(T

t0
)+
√
d(
√
T−
√
t0)
,SNN, ∥ · ∥2

)
δ

+ (2 + a)ι

 .

(B.17)

Step 3: Bounding Term (B). By applying the formulas of ℓ and ℓtrunc in (7) and (B.13), we
have

(B) =
1

T − t0

∫ T

t0

ER0∼PdataERt|R0

[∥∥∥∥psθ(Rt, t) +
(Rt − αtR0)

ht

∥∥∥∥2
2

1 {∥R0∥2 > ρ}
]
dt

≤ 2

T − t0

∫ T

t0

ER0∼Pdata

[
htd+K2 + 2∥R0∥22

h2t
1{∥R0∥2 > ρ}

]
dt,

where the inequality follows from applying the upper bound (B.14) and (Rt|R0 = r) ∼ N (αtr, htId).
Notice that the density of R0 = βF+ ε can be bounded by

pdata(r) =

d∏
i=1

1√
2πσi

exp

(
− ε2i
2σ2i

)
pfac(f)

(i)

≤ (2π)−(d+k)/2C1∏d
i=1 σi

exp

(
−σ
−2
max∥ϵ∥22 + C2∥βf∥22

2

)

39

≤ C1(2π)
−(d+k)/2∏d

i=1 σi
exp

(
− ∥r∥22
2(σ2max + 1/C2)

)
, (B.18)

where (i) follows from the sub-Gaussian tail (19) in Assumption 2 and the fact that β is a norm-
preserving transformation satisfying β⊤β = I in Assumption 1. Therefore, by applying the upper
bound of pdata in (B.18), we obtain

(B) ≤ 2

T − t0

∫ T

t0

[(
htd+K2 + 2∥r∥2

h2t

)
C1(2π)

− d+k
2∏d

i=1 σi
exp

(
− ∥r∥22
2(σ2max + 1/C2)

)
1{∥r∥2 > ρ}

]
dt

(i)

≤ C1d(σ
2
max + 1/C2)2

−(d+k)/2

(
∏d

i=1 σi)(T − t0)Γ(d/2 + 1)
exp

(
− ρ2

2(σ2max + 1/C2)

)∫ T

t0

ρd−1(htd+K2 + ρ2)

h2t
dt

= O

(
dρd−12−(d+k)/2(σ2max + 1/C2)

(
∏d

i=1 σi)(T − t0)Γ(d/2 + 1)

(
ρ2 +K2

t0
+ d log

T

t0

)
exp

(
− ρ2

2(σ2max + 1/C2)

))
,

(B.19)

where (i) follows from the tail estimation in Lemma 16 of Chen et al. (2023).

Step 4: Bounding Term (C). Recall that sθ is the constructed network approximator in Theo-
rem 1. For any ϵ > 0, we have

(C) ≤ pL(sθ)− (1 + a)Ltrunc(sθ)︸ ︷︷ ︸
(♠)

+(1 + a)Ltrunc(sθ)︸ ︷︷ ︸
(♣)

,

where (♠) is the statistical error and (♣) is the approximation error.
First, we can bound (♠) with high probability using the fact that R0 has a sub-Gaussian tail.

Specifically, applying Lemma 16 of Chen et al. (2023) to R0 with density bound (B.18), we obtain

P (∥R0∥2 > ρ) ≤ C1d(σ
2
max + 1/C2)2

−(d+k)/2

(T − t0)Γ(d/2 + 1)
(∏d

i=1 σi

)ρd−1 exp(− ρ2

2(σ2max + 1/C2)

)
:= q. (B.20)

Applying union bound for n i.i.d. data samples {Ri
0}ni=1 from Pdata leads to

P
(∥∥Ri

0

∥∥
2
≤ ρ for all i = 1, . . . , n

)
≥ 1− nq.

Immediately, we obtain that, with probability 1− nq, it holds

(♠) = pLtrunc(sθ)− (1 + a)Ltrunc(sθ).

Meanwhile, Lemma 15 of Chen et al. (2023) implies that with probability 1− δ, it holds that

(♠) = O
(
(1 + 6/a)

n

(
ρ2 +K2

t0(T − t0)
+

d

T − t0
log

T

t0

)
log

1

δ

)
. (B.21)

40

Here, we take δ defined in (B.17). For (♣), we have

(♣) ≤ L(sθ) =
1

T − t0

∫ T

t0

ERt∼Pt ∥sθ(Rt, t)−∇ log pt(Rt)∥22 dt

+ L (sθ)−
1

T − t0

∫ T

t0

ERt∼Pt ∥sθ(Rt, t)−∇ log pt(Rt)∥22 dt︸ ︷︷ ︸
(E)

. (B.22)

Then, by Theorem 1, we have

(♣) = O
(

kϵ2

t0(T − t0)

)
+ (E). (B.23)

Note that the two terms in (E) are equivalent to the score-matching objectives (5) and (6), hence
(E) is on a constant order.

Combining two error bounds for (♠) and (♣) in (B.21) and (B.23), we deduce that, with
probability (1− nq)(1− δ), it holds

(C) = O
(
(1 + 6/a)

n

(
ρ2 +K2

t0 (T − t0)
+

d

T − t0
log

T

t0

)
log

1

δ
+

(1 + a)kϵ2

t0(T − t0)

)
+ (1 + a) · (E). (B.24)

Step 5: Choosing ρ and putting together (A), (B) and (C). Under a fixed δ > 0 in (B.17),
we choose ρ and τ as the following to balance terms (A), (B), and (C),

ρ = O
(√

σ21 (d+ logK + log(n/δ))

)
and τ = O

(
1

nt0(T − t0)

)
. (B.25)

By direct calculation, our choice of ρ implies that q ≤ δ/n, where q is defined in (B.20). Next, we
derive the error bound for terms (A)-(C) under our choice of the hyper-parameters.

1. For term (A), we first give an upper bound for η defined in (B.15). Substituting the order of
ρ in (B.25) into (B.15), we deduce that

η = O
(

1

nt0(T − t0)

)
. (B.26)

Then, substituting the order of K in (22) in Theorem 1 and the hyperparameters in (B.25)

41

and (B.26) into (B.17), we obtain that with probability 1− δ, it holds that

(A) = O

(
(1 + σ8max)(1 + 3/a)

(
(1 + Ls)

2
(
log 1

ϵ + k
)2

+ d+ log n
δ

)
nt0(T − t0)

· log
N

(
1

nt0(ρ+K+
√
d(
√
T−
√
t0))

,SNN, ∥ · ∥2
)

δ
+

1

nt0(T − t0)

)
(i)
= O

(
(1 + σ8max)(1 + 3/a)

(
(Ls + 1)2(log 1

ϵ + k)2 + d+ log n
δ

)
nt0(T − t0)

·
(
dk + Tτ(1 + Ls)

k(1 + σkmax)ϵ
−(k+1)

(
log

1

ϵ
+ k
) k+4

2

)
log

Tτdk

t0ιϵ
+

1

nt0(T − t0)

)
,

(B.27)
where (i) follows from applying the upper bound (B.46) for the covering number of SNN in
Lemma B.4.

2. For term (B), by plugging the order of ρ and K, defined in (B.25) and (22), into (B.19) and
by straightforward calculations, we have

(B) = O
(

1

nt0(T − t0)

)
. (B.28)

3. For term (C), applying the fact that q ≤ δ
n and the order of ρ and K in (B.25) and (22) to

(B.24), with probability 1− 2δ, it holds

(C) = O

(1 + σ8max)(1 + 6/a)
(
(1 + Ls)

2
(
log 1

ϵ + k
)2

+ d+ log n
δ

)
nt0(T − t0)

log
1

δ

+
1

nt0(T − t0)
+

kϵ2

min{σ4d, 1}

)
+ (1 + a) · (E).

(B.29)

Summing up the error terms in (B.27)-(B.29), we derive that with probability 1− 3δ, it holds that

L (psθ) ≤ (A) + (B) + (1 + a) · (C)

= O

(
(1 + σ8max)(1 + 6/a)

(
(1 + Ls)

2(log 1
ϵ + k

)2
+ d+ log n

δ)

nt0(T − t0)

·
(
dk + Tτ(1 + Ls)

k(1 + σkmax)ϵ
−(k+1)

(
log

1

ϵ
+ k

) k+4
2
)
log

Tτdk

t0ιϵ

)

+O

(
1

nt0(T − t0)
+

kϵ2

t0(T − t0)

)
+ (1 + a)2 · (E).

42

By the definition of (E) in (B.22) and setting a = ϵ2, with probability 1− 3δ, it holds that

1

T − t0

∫ T

t0

ERt∼Pt ∥sθ(Rt, t)−∇ log pt(Rt)∥22 dt

= O

(
(1 + σ8max)

(
(1 + Ls)

2(log 1
ϵ + k

)2
+ d+ log n

δ)

ϵ2nt0(T − t0)

·
(
dk + Tτ(1 + Ls)

k(1 + σkmax)ϵ
−(k+1)

(
log

1

ϵ
+ k

) k+4
2
)
log

Tτdk

t0ιϵ

)

+O

(
1

nt0(T − t0)
+

kϵ2

t0(T − t0)

)
=: (E1) + (E2).

Step 6: Balancing Error Terms. Take δ = 1/(3n) such that with probability 1− 1/n, it holds
that

(E1) = O
(
(1 + σk+8

max)(1 + Ls)
k(d2 log d)(k

k+7
2 log k)(τ log τ)Tϵ−(k+3) log

k+7
2 (1ϵ) log

3 n

nt0

)
(i)
= O

(
(1 + σ2kmax)(1 + Ls)

k(d
7
2 log d)(k

k+10
2 log

5
2 k)ϵ−(k+3) log

k+10
2 (1ϵ) log

9
2 n

nt0

)
(ii)
= Õ

(
1

n
ϵ−(k+3) log

k+10
2 (

1

ϵ
)

)
and

(E2) = Õ
(
1

n
+ ϵ2

)
. (B.30)

Here (i) follows from invoking the upper bound of τ(S) in (B.4) and Õ(·) in (i) holds by keeping
terms only on the sample size n and the error term ϵ.

To balance two error terms (E1) and (E2), we choose ϵ as the following

ϵ = n−
1−δ(n)
k+5 with δ(n) =

(k + 10) log log n

2 log n
. (B.31)

Consequently, we obtain

1

n
ϵ−(k+3) log

k+10
2 (1/ϵ) = n−1+

(k+3)(1−δ(n))
k+5 (1/ϵ)

(k+10) log log(1/ϵ)
2 log(1/ϵ)

= n−
2−2δ(n)

k+5 · n−1+
(
1+

(k+10) log log(1/ϵ)
2(k+5) log(1/ϵ)

)(
1−δ(n)

)
(i)
= O

(
n−

2−2δ(n)
k+5

)
= ϵ2,

where (i) holds by the formula of δ(n) in (B.31). By straightforward calculations, we deduce that,

43

with probability 1− 1
n , it holds

1

T − t0

∫ T

t0

ERt∼Pt ∥sθ(Rt, t)−∇ log pt(Rt)∥22 dt

= O
(
1

t0
(1 + σ2kmax)(1 + Ls)

kd2k
k+10

2

(√
dn−

2−2δ(n)
k+5 + n−

k+3+2δ(n)
k+5

)
log d log4 n

)
= Õ

(
1

t0
(1 + σ2kmax)d

5
2k

k+10
2 n−

2−2δ(n)
k+5 log4 n

)
,

where the last equality follows from omitting terms associated with Ls and polynomial terms in
log t0, log d, and log k. □

B.3 Supporting Lemmas and Proofs

Lemma B.1. Under the same assumptions as in Theorem 1, it holds that

τ(S) = O
(
Ls poly(1 + σ2max) poly(

√
kS)

)
, (B.32)

where τ(S) is defined in (B.3) and poly(·) represents a cubic polynomial.

Proof of Lemma B.1.
Recall that τ(S) is associated with ξ(z, t), which is defined in (17). By direct calculation, we

have

∂ξ

∂t
= −1

2

∫
f
∂∥Γ

− 1
2

t (z−αtf)∥22
∂t ϕ(z;αtf ,Γt)pfac(f) df∫
ϕ(z;αtf ,Γt)pfac(f) df

+
1

2
ξ

∫ ∂∥Γ
− 1

2
t (z−αtf)∥22

∂t ϕ(z;αtf ,Γt)pfac(f) df∫
ϕ(z;αtf ,Γt)pfac(f) df

(i)
=
α2
t

2
E[FF⊤β⊤Λ−2t βF|Z = z] +

αt

2
Cov[F|Z = z]Ctz+

α2
t

2
E[F|Z = z]E[F⊤β⊤Λ−2t βF|Z = z],

(B.33)

where (i) follows from plugging in

∂∥Γ−
1
2

t (z− αtf)∥22
∂t

= −α2
t f
⊤β⊤Λ−2t βf + αtf

⊤Ctz+ z⊤β⊤(Λ−1t −Λ−2t)βz

with Ct = β⊤(2Λ−2t −Λ−1t)β and re-arranging terms. To bound ∥∂ξ/∂t∥2, we provide the following
two upper bounds.

Conditional Third Moment Bound. By Cauchy-Schwarz inequality, we have∥∥∥E[FF⊤β⊤Λ−2t βF|Z = z]
∥∥∥
2
≤
√

E[∥F∥22|Z = z] · E[∥F⊤β⊤Λ−2t βF∥22|Z = z]

≤ 1

ht + σ2dα
2
t

√
E[∥F∥22|Z = z] · E[∥F∥42|Z = z], (B.34)

44

where the second inequality holds due to β⊤β = Ik and ∥Λ−2t ∥op ≤ 1/(ht + σ2dα
2
t).

Conditional Covariance Bound. Recall ssub defined in (13). Taking the derivative of ssub with
respect to z, we have

∂ssub (z, t)

∂z
= −Λ−1t β + α2

tΛ
−1
t β

∫
ff⊤Γ−1t ϕ(z;αtf ,Γt)pfac(f)df∫

ϕ(z;αtf ,Γt)pfac(f)df

− α2
tΛ
−1
t β

∫
fϕ(z;αtf ,Γt)pfac(f)df∫
ϕ(z;αtf ,Γt)pfac(f)df

∫
f⊤Γ−1t ϕ(z;αtf ,Γt)pfac(f)df∫

ϕ(z;αtf ,Γt)pfac(f)df

= α2
tΛ
−1
t β

[
Cov (F|Z = z)Γ−1t − 1

α2
t

Ik

]
. (B.35)

Since ssub is Ls-Lipschitz by Assumption 3, we deduce from (B.35) that for any t ∈ (0, T], it holds

∥Cov (F|Z = z)∥op ≤ (ht + σ2maxα
2
t)(1 + Ls(ht + σ2maxα

2
t))

α2
t

≤ (1 + σ4max)(1 + Ls),

where the second inequality follows from taking t = 0.
Furthermore, as

∥Ct∥op = ∥β⊤(2Λ−2t −Λ−1t)β∥op ≤ ∥2Λ−2t −Λ−1t ∥op ≤ 3

(ht + σ2dα
2
t)

2
,

it holds that

∥Cov[F|Z = z]Ctz∥2 ≤
3

(ht + σ2dα
2
t)

2
∥Cov[F|Z = z]∥op ∥z∥2 (B.36)

≤ 3(1 + σ4max)(1 + Ls)

(ht + σ2dα
2
t)

2
∥z∥2. (B.37)

By substituting the conditional third moment bound in (B.34) and covariance bound in (B.36)
into (B.33), and using the fact that F,Z have the sub-Gaussian tails in the compact domain S, we
conclude that

τ(S) = O
(
Ls(1 + σ4max) poly(

√
kS)

)
.

where poly(·) represents a cubic polynomial. □

Lemma B.2. Suppose Assumption 2 holds. Let ξ be defined in (17) and Z = β⊤Λ−1t R with
distribution P fac

t . Given ϵ > 0, with S = c
(√

(1 + σ2max)(k + log(1/ϵ))
)

for some constant c > 0,
it holds that

∥ξ (Z, t)1{∥Z∥2 > S}∥L2(P fac
t) ≤ ϵ, ∀t ∈ (0, T]. (B.38)

Proof of Lemma B.2.

45

Plugging in the expression of ξ in (17), we obtain that

∫ ∥∥∥∥∥
∫

fϕ(Γtβ
⊤Λ−1t r;αtf ,Γt)pfac(f)df∫

ϕ(Γtβ
⊤Λ−1t r;αtf ,Γt)pfac(f)df

∥∥∥∥∥
2

2

1{∥β⊤Λ−1t r∥2 > S}pt(r)dr

(i)

≤
∫
∥β⊤Λ−1

t r∥2>S
∥f∥22

ϕ(Γtβ
⊤Λ−1t r;αtf ,Γt)pfac(f)df∫

ϕ(Γtβ
⊤Λ−1t r;αtf ,Γt)pfac(f)df

pt(r)dr

(ii)

≤
∫ ∫

∥β⊤Λ−1
t r∥2>S

∥f∥22ϕ(TtΛ
− 1

2
t r;αtΛ

− 1
2

t βf , I)ϕ((I−Tt)Λ
− 1

2
t r;0, I)pfac(f)drdf

=

∫
∥β⊤Λ−1

t r∥2>S

∫
∥Λ
− 1

2
t βf∥2≤ 1

2
∥TtΛ

− 1
2

t r∥2
∥f∥22ϕ(TtΛ

− 1
2

t r;αtΛ
− 1

2
t βf , I)pfac(f)dfd(TtΛ

− 1
2

t r)︸ ︷︷ ︸
(A)

+

∫
∥β⊤Λ−1

t r∥2>S

∫
∥Λ
− 1

2
t βf∥2> 1

2
∥TtΛ

− 1
2

t r∥2
∥f∥22ϕ(TtΛ

− 1
2

t r;αtΛ
− 1

2
t βf , I)pfac(f)dfd(TtΛ

− 1
2

t r)︸ ︷︷ ︸
(B)

,

where (i) holds due to the Cauchy-Schwarz inequality, (ii) invokes the expression of pt(r) in (A.2)
and re-arranging terms, and the last equality holds by straightforward calculations.

Bounding Term (A). We define the change of variable X := TtΛ
− 1

2
t Rt and denote by x a

realization of X. By the Cauchy-Schwarz inequality and ∥Λ−
1
2

t βf∥2 ≤ 1
2∥TtΛ

− 1
2

t r∥2, we have

∥x− αtΛ
− 1

2
t βf∥22 ≥

1

2
∥x∥22 − α2

t ∥Λ
− 1

2
t βf∥22 ≥

1

4
∥x∥22.

As a result, we can deduce that

(A) ≤
∫
∥β⊤Λ

− 1
2

t x∥2>S

∫
∥Λ
− 1

2
t βf∥2≤ 1

2
∥x∥2

∥f∥22(2π)−
k
2 exp

(
−∥x∥22

8

)
pfac(f)dfdx

≤ E
[
∥f∥22

]
·
∫
∥β⊤Λ

− 1
2

t x∥2>S
(2π)−

k
2 exp

(
−∥x∥22

8

)
dx

(i)

≤ E
[
∥f∥22

]
·
∫
∥x∥2>(ht+σ2

dα
2
t)

1
2 S

(2π)−
k
2 exp

(
−∥x∥22

8

)
dx

(ii)

≤ E
[
∥f∥22

]
·
2−

k
2
+2kSk−2(ht + σ2dα

2
t)

(k−2)/2

(12 − η)Γ(k2 + 1)
exp

(
−
(ht + σ2dα

2
t)S

2

8

)
. (B.39)

where (i) holds due to ∥β⊤Λ−
1
2

t ∥op ≤ (ht + σ2dα
2
t)
− 1

2 , and (ii) follows from the sub-Gaussian tail in
Lemma 16 of Chen et al. (2023).

Bounding Term (B). We define the change of variable Y := β⊤Λ−1t Rt and denote by y the
realization of Y. Given S > min{B/2, 1}, applying the sub-Gaussian tail of pfac(f) in (19), we

46

obtain that

(B) ≤
∫
∥y∥2>S

∫
∥Λ
− 1

2
t βf∥2> 1

2
∥Λ
− 1

2
t βΓty∥2

ϕ(Λ
− 1

2
t βΓty;αtΛ

− 1
2

t βf , I) · C1

(2π)
k
2

∥f∥22 exp
(
−C2∥f∥22

2

)
dfdy

(i)

≤ C1

(2π)k

∫
∥y∥2>S

∫
∥Λ
− 1

2
t βf∥2> 1

2
∥Λ
− 1

2
t βΓty∥2

exp

(
−
C2

∥∥(α2
t Ik + C2Γt)

− 1
2Γty

∥∥2
2

2

)

· ∥f∥22 exp

(
−
∥∥(α2

tΓ
−1
t + C2Ik)

1
2

(
f − αt(α

2
tΓ
−1
t + C2Ik)

−1y
) ∥∥2

2

2

)
dfdy

(ii)

≤ C1

(2π)k

∫
∥y∥2>S

∫
∥Λ
− 1

2
t βf∥2> 1

2
∥Λ
− 1

2
t βΓty∥2

exp

(
−
C2

∥∥(α2
t Ik + C2Γt)

− 1
2Γty

∥∥2
2

2

)

· ∥f∥22 exp

(
−
C2

∥∥f − αt(α
2
tΓ
−1
t + C2Ik)

−1y
∥∥2
2

2

)
dfdy, (B.40)

where (i) invokes the formula of ϕ(y;αtf ,Γt) in (12) and completing the square for f , (ii) follows
from ∥α2

tΓ
−1
t + C2Ik∥op ≥ C2.

Furthermore, applying E[∥f∥22] ≤ α2
t ∥(α2

tΓ
−1
t + C2Ik)

− 1
2y∥22 + k to (B.40), we deduce that

(B) ≤ C1

C
k
2
2 (2π)

k

∫
∥y∥2>S

[
α2
t ∥(α2

tΓ
−1
t + C2Ik)

−1y∥22 + k
]
· exp

(
−
C2

∥∥(α2
t Ik + C2Γt)

− 1
2Γty

∥∥2
2

2

)
dy

≤ C12
− k

2
+2kSk

C2Γ(
k
2 + 1)(α2

t + C2(ht + σ2maxα
2
t))

exp

(
−(α2

t + C2(ht + σ2maxα
2
t))C2S

2

2

)
, (B.41)

where the last inequality is due to ∥Γt∥op ≥ ht+σ
2
dα

2
t , ∥(α2

t Ik+C2Γt)
− 1

2 ∥op ≥
√
α2
t + C2(ht + σ2maxα

2
t)

and the sub-Gaussian tail in Lemma 16 of Chen et al. (2023) and similar operator norm bounds in
(ii).

Combining the error bounds (B.39) and (B.41) for (A) and (B), we conclude that

∥ξ (Z, t)1{∥Z∥2 > S}∥L2(P fac
t) ≤c

′ 2−
k
2
+3k(ht + σ2dα

2
t)

k
2Sk

Γ(k2 + 1)(α2
t + C2(ht + σ2maxα

2
t))

exp

(
−
(ht + σ2dα

2
t)S

2

8

)
(B.42)

for some constant c′ > 0. Given any ϵ > 0, by the upper bound of truncation error in (B.42), we
can choose

S = c

(√(
1 + σ2max

)(
k + log

1

ϵ

))
,

such that ∥ξ (Z, t)1{∥Z∥2 > S}∥L2(P fac
t) ≤ ϵ. Here, c is an absolute constant. □

Lemma B.3. Suppose Assumption 2 holds. For any sθ1 (·, t) and sθ2 (·, t), when ρ is sufficiently

47

large, it holds that

sup
∥r∥2≤ρ

ERt|R0=r

[
(K + ∥Rt∥2 + ∥r∥2) ∥sθ1 (Rt, t)− sθ2 (Rt, t)∥2 · 1

{
∥Rt∥2 > 3ρ+

√
d log d

}]
= O

(
ρK2h

−2− d
2

t

(ρ
d

)d
exp

(
−ρ

2

ht

))
. (B.43)

Proof of Lemma B.3. Denote Dti = diag{1/(ht + ci1α
2
t), . . . , 1/(ht + ci1α

2
t)} for i = 1, 2.

Applying the formula of sθ1 and sθ2 in (18), we calculate

ERt|R0=r

[
(K + ∥Rt∥2 + ∥r∥2) ∥sθ1 (Rt, t)− sθ2 (Rt, t)∥2 · 1

{
∥Rt∥2 > 3ρ+

√
d log d

}]
(i)

≤
∫ (

K +
∥∥r′∥∥

2
+ ∥r∥2

)(
∥(Dt1 −Dt2)r

′∥2 + ∥αt(Dt1V1 −Dt2V2)gζ1(V
⊤
1 Dt1r

′, t)∥2

+ ∥αtDt2V2(gζ1(V
⊤
1 Dt1r

′, t)− gζ2(V
⊤
2 Dt2r

′, t))∥2
)
· 1
{∥∥r′∥∥

2
> 3ρ+

√
d log d

}
ϕ(r′;αtr, htI)dr

′

(ii)
= O

(∫
∥r′∥2>3ρ+

√
d log d

(K + ∥r′∥2 + ∥r∥2)(K + ∥r′∥2)
h2t (2πht)

d
2

exp

(
− 1

2ht

(
1

2

∥∥r′∥∥2
2
− ∥r∥22

))
dr′
)
,

(B.44)

where (i) is due to Cauchy-Schwarz inequality; (ii) follows from the upper bounds (15) and (18) of
{gθi ,Vi,Dti}i=1,2, α2

t ≤ 1 and

ϕ(r′;αtr, htI) ≤ (2πht)
− d

2 exp

(
− 1

2ht

(
1

2

∥∥r′∥∥2
2
− ∥r∥22

))
.

Then, substituting the upper bound for the tail estimation in Lemma 16 of Chen et al. (2023) into
(B.44), we deduce that

(B.44) = O
(
(K2 +K∥r∥2)(2ht)−2−

d
2 (3ρ+

√
d log d)d−2

Γ(d2 + 1)
exp

(
−(3ρ+

√
d log d)2

4ht
+

∥r∥22
2ht

))
+

(2K + ∥r∥2)(2ht)−2−
d
2 (3ρ+

√
d log d)d−1

Γ(d2 + 1)
exp

(
−(3ρ+

√
d log d)2

4ht
+

∥r∥22
2ht

)
+

(2ht)
−2− d

2 (3ρ+
√
d log d)d

Γ(d2 + 1)
exp

(
−(3ρ+

√
d log d)2

4ht
+

∥r∥22
2ht

)
= O

(
K2∥r∥2h

−2− d
2

t

(ρ
d

)d
exp

(
−9ρ2 − 2∥r∥22

4ht

))
. (B.45)

Here, the last inequality holds since Γ(d2 + 1) = O(
∏ d

2
j=1 j) and

2−
d
2 (3ρ+

√
d log d)d exp

(
−6ρ

√
d log d+d log d

4ht

)
Γ(d2 + 1)

= O
((ρ

d

)d)

48

for a sufficiently large ρ > max{B, d}.
Immediately, substituting ∥r∥2 ≤ ρ into (B.45), we obtain the desired result.

□

Lemma B.4. For any given ϵ > 0, δ > 0, and ρ = O
(√

σ2max (d+ logK + log(n/δ))
)

defined in
(B.25), the ν-covering number of SNN in (18) is

logN(ν,SNN, ∥ · ∥2) =
((

dk + Tτ(1 + Ls)
k(1 + σkmax)ϵ

−(k+1)

(
log

1

ϵ
+ k

) k+4
2
)
log

Tτdk

t0νϵ

)
.

(B.46)

Proof of Lemma B.4. SNN consists of three components:

1. A vector c = (c1, c2, . . . , cd) ∈ [0, σmax]
d and its induced matrix

Dt = diag{1/(ht + α2
t c1), 1/(ht + α2

t c2), . . . , 1/(ht + α2
t cd)}.

2. A matrix V with orthonormal columns.

3. A ReLU network gζ .

Denote Dti = diag{1/(ht +α2
t ci1), 1/(ht +α2

t ci2), . . . , 1/(ht +α2
t cid)} for i = 1, 2. Directly incorpo-

rating the sub-additive property of L2 norm and α2
t ≤ 1, we have

∥sθ1(r, t)− sθ2(r, t)∥2
≤ ∥(Dt1V1 −Dt2V1)gζ1(V

⊤
1 Dt1r, t)∥2 + ∥(Dt2V1 −Dt2V2)gζ1(V

⊤
1 Dt1r, t)∥2

+ ∥Dt2V2(gζ1(V
⊤
1 Dt1r, t)− gζ2(V

⊤
1 Dt1r, t))∥2 + ∥Dt2V2(gζ2(V

⊤
1 Dt1r, t)− gζ2(V

⊤
2 Dt1r, t))∥2

+ ∥Dt2V2(gζ2(V
⊤
2 Dt1r, t)− gζ2(V

⊤
2 Dt2r, t))∥2 + ∥(Dt1 −Dt2)r∥2

≤ ∥Dt1 −Dt2∥op∥gζ1(V
⊤
1 Dt1r, t)∥2 + ∥Dt2∥op∥V1 −V2∥op∥gζ1(V

⊤
1 Dt1r, t)∥2

+ ∥Dt2∥op∥gζ1(V
⊤
1 Dt1r, t)− gζ2(V

⊤
1 Dt1r, t)∥2 + γ∥Dt2∥op∥V1 −V⊤2 ∥op∥Dt1∥op∥∥r∥2

+ γ∥Dt2∥op∥Dt1 −Dt2∥op∥r∥2 + ∥Dt1 −Dt2∥op∥r∥2, (B.47)

where the last inequality follows from the fact that {Vi}i=1,2 are orthogonal and {gζi}i=1,2 is
γ-Lipschitz.

To analyze the covering number of SNN, we consider

∥c1−c2∥∞ ≤ δc, ∥V1−V2∥op ≤ δV , and sup
∥r∥2≤3ρ+

√
d log d,t∈[t0,T]

∥gζ1(r, t)−gζ2(r, t)∥2 ≤ δf . (B.48)

Immediately, we can deduce that

sup
t∈[t0,T]

∥Dt1 −Dt2∥op ≤ δc
t20
. (B.49)

49

Then, on the domain with radius ∥r∥2 ≤ 3ρ+
√
d log d and t ∈ [t0, T], by substituting the upper

bounds (B.48) and (B.49) into (B.47), we obtain

sup
∥r∥2≤3ρ+

√
d log d,t∈[t0,T]

∥sθ1(r, t)− sθ2(r, t)∥2

≤ δcK

t20
+
δVK

t0
+
δf
t0

+
γδV (3ρ+

√
d log d)

t20
+
γδc(3ρ+

√
d log d)

t30
+
δc(3ρ+

√
d log d)

t20
(i)
=
δc(γ(3ρ+

√
d log d) + t0K + t0(3ρ+

√
d log d))

t30
+
δV (γ(3ρ+

√
d log d) + t0K)

t20
+
δf
t0

(ii)
= O

(
δcγ(3ρ+

√
d log d) + t0δV γ(3ρ+

√
d log d) + t20δf

t30

)
,

where (i) follows from rearranging terms, and (ii) holds by omitting higher-order terms on δc, δV ,

and δf . For a hypercube [0, σmax]
d, the δc-covering number is bounded by

(
σmax
δc

)d
. For a set

of matrices {V ∈ Rd×k : ∥V∥op ≤ 1}, its δV -covering number is bounded by
(
1 + 2

√
k

δV

)dk
(see

Lemma 8 in Chen, Li, and Zhao (2019)). Following Lemma 5.3 in Chen et al. (2022a), we take

the upper bound
(
2L2M(3ρ+

√
d log d))κLML+1

δf

)J
for the δf -covering number of the function class (15).

Therefore, with ρ = O
(√

σ2max (d+ logK + log(n/δ))
)
, we have

logN(ν,SNN, ∥ · ∥2) ≤ O

(
d log

(
σmaxγ(3ρ+

√
d log d)

t30ν

)
+ dk log

(
1 +

2
√
kγ(3ρ+

√
d log d)

t20ν

)

+J log

(
2L2M(3ρ+

√
d log d)κLML+1

t0ν

))
(i)
= O

((
dk + Tτ(1 + Ls)

k(1 + σkmax)ϵ
−(k+1)

(
log

1

ϵ
+ k

) k+4
2
)
log

Tτdk

t0νϵ

)
,

where (i) follows from invoking the order of network parameters in (22) in Theorem 1 and omitting
higher orders terms such as log log d and log log k. □

C Omitted Proofs in Section 5

In this section, we provide the proof of Theorem 3 and the lemmas used in the proof.

C.1 Proof of Theorem 3

Proof. The proof contains two parts: the distribution estimation and the latent subspace recovery.
For notational simplicity, let us denote

ϵ :=
1

t0
(1 + σ2kmax)d

5
2k

k+10
2 n−

2−2δ(n)
k+5 log4 n. (C.1)

50

Part 1: Return Distribution Estimation. First, we can decompose TV(Pdata, pPt0) into

TV(Pdata, pPt0) ≤ TV(Pdata, Pt0) + TV(Pt0 , P̃t0) + TV(P̃t0 ,
pPt0),

where Pdata is the initial distribution of R in (8), pPt0 and P̃t0 are the marginal distribution of the
estimated backward process pR←T−t0 in (4) initialized with pR←0 ∼ N (0, Id) and pR←0 ∼ PT , respec-
tively. Here, TV(Pdata, Pt0) is the early-stopping error, TV(Pt0 , P̃t0) captures the approximation
error of the score estimation, and TV(P̃t0 ,

pPt0) reflects the mixing error. We bound each term in
Lemma C.1 and the error bound (C.28) is given by

TV
(
Pdata, pPt0

)
= O

(
dt0Ls(1 + σ2max) +

√
ϵ(T − t0) +

√
KL (Pdata∥N (0, Id)) exp(−T)

)
= Õ

(
(1 + σkmax)d

5
4k

k+10
4 n

− 1−δ(n)
2(k+5) log

5
2 n

)

where the last equality follows from invoking the order of ϵ in (C.1), t0 = n−
1−δ(n)
k+5 , and T = O(log n)

and omitting the lower-order terms in dt0. Hence the distribution estimation result in Theorem 3
is completed.

Part 2: Latent Subspace Recovery. First, we generate m = O
(
λ−2max(Σ0)dn

2(1−δ(n))
k+5 log n

)
new samples via Algorithm 1. By the error bound (26) in Lemma 2, we obtain that, with probability
1− 1/n, it holds

∥∥∥pΣ0 −Σ0

∥∥∥
op

= Õ

(
λmax(Σ0)(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
.

Therefore, applying Weyl’s theorem to pΣ0 and Σ0, we deduce that for any i = 1, 2, . . . , d, it holds
that

∣∣∣λi(pΣ0)− λi(Σ0)
∣∣∣ = Õ

(
λmax(Σ0)(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
.

In addition, for any i = 1, 2, . . . , k, it holds that∣∣∣∣∣λi(pΣ0)

λi(Σ0)
− 1

∣∣∣∣∣ = Õ

(
λmax(Σ0)(1 + σkmax)d

5
4k

k+10
4

λi(Σ0)
n−

1−δ(n)
k+5 log

5
2 n

)
.

Next, we analyze the SVD of pΣ0. Recall that the top k-dimensional eigenspace of Σ0 and pΣ0 are
denoted as U and pU, respectively. For any j = 1, 2, . . . , k, define

cos∠j(pU,U) := max
pu∈Col(pU),u∈Col(U)

|pu⊤u|
∥pu∥2∥u∥2

:= |pu⊤j uj |,

subject to pu⊤j puℓ = 0 and u⊤j uℓ = 0, for any ℓ = 1, 2, . . . , j − 1,

51

where Col(·) represents the column space, pu0 := 0, and u0 := 0. Applying Davis-Kahan-sin(θ)
Theorem of Davis and Kahan (1970) to pU and U, we have

∥ sin∠(pU,U)∥F ≤ ∥pΣ0 −Σ0∥F
λk(Σ0)− λk+1(Σ0)

= O
(
λmax(Σ0)(1 + σkmax)d

5
4k

k+10
4

Eigen-gap(k)
· n−

1−δ(n)
k+5 log

5
2 n

)
,

(C.2)
where

sin∠(pU,U) :=
(
1− cos2∠1(pU,U), 1− cos2∠2(pU,U), . . . , 1− cos2∠k(pU,U)

)
. (C.3)

The inequality in (C.2) follows from the fact that ∥A∥F ≤
√
k∥A∥op for any A ∈ Rd×k. By the

property of SVD, we can find two orthogonal matrices O1,O2 ∈ Rk×k such that

pU⊤U = O⊤1 diag
{
cos∠1(pU,U), cos∠2(pU,U), . . . , cos∠k(pU,U)

}
O2.

Immediately, it holds that

pU⊤UU⊤ pU = O⊤1 diag
{
cos2(∠1), . . . , cos

2(∠k)
}
O1. (C.4)

Therefore, we deduce that

∥pUpU⊤ −UU⊤∥2F = tr(pUpU⊤ +UU⊤ − 2pUpU⊤UU⊤)

(i)
= tr(pU⊤ pU) + tr(U⊤U)− 2 tr(O⊤1 diag

{
cos2(∠1), . . . , cos

2(∠k)
}
O1)

(ii)
= 2k −

k∑
i=1

cos2(∠i) = 2∥ sin∠(pU,U)∥2F, (C.5)

where (i) invokes (C.4) and (ii) holds due to the fact that pU, U, and O1 have orthogonal columns,
and the last equality holds by the definition of sin∠ defined in (C.3). Therefore, substituting the
error bound of ∥ sin∠(pU,U)∥2F in (C.2) into (C.5), we obtain

∥pUpU⊤ −UU⊤∥F = Õ

(
λmax(Σ0)(1 + σkmax)d

5
4k

k+12
4

Eigen-gap(k)
n−

1−δ(n)
k+5 log

5
2 n

)
. □

C.2 Supporting Lemmas for Theorem 3

Recall that Lemma 2 and Lemma Lemma 3 are key results of our development. We provide their
proofs in Appendices C.2.1 and C.2.2 respectively. Some additional lemmas that support the proof
of Theorem 3 are stated and proved in Appendix C.2.3.

C.2.1 Proof of Lemma 2

Proof.

52

For notational simplicity, let us define

Σt0 := ERt0∼Pt0

[
Rt0R

⊤
t0

]
− ERt0∼Pt0

[Rt0]ERt0∼Pt0
[Rt0]

⊤,

Σ̃t0 := E
Rt0∼P̃t0

[
Rt0R

⊤
t0

]
− E

Rt0∼P̃t0
[Rt0]ERt0∼P̃t0

[Rt0]
⊤, and

qΣt0 = E
Rt0∼ pPt0

[
Rt0R

⊤
t0

]
− E

Rt0∼ pPt0
[Rt0]ERt0∼ pPt0

[Rt0]
⊤.

(C.6)

The proof is based on the following error decomposition.

Error Decomposition. We decompose the target operator norm as

∥∥pΣ0 −Σ0

∥∥
op ≤

∥∥Σ0 −Σt0

∥∥
op︸ ︷︷ ︸

(A)

+
∥∥Σt0 − Σ̃t0

∥∥
op︸ ︷︷ ︸

(B)

+
∥∥Σ̃t0 − qΣt0

∥∥
op︸ ︷︷ ︸

(C)

+
∥∥pΣ0 − qΣt0

∥∥
op︸ ︷︷ ︸

(D)

, (C.7)

where term (A) is the early-stopping error, term (B) is the approximation error of SNN term (C)

is the mixing error of forward process (1), term (D) is the finite-sample error.

Bounding Term (A). Using the fact that Rt0 = e−t0/2R0 +B1−e−t0 , we have

Σ0 −Σt0 = Σ0 − e−t0Σ0 − (1− e−t0)Id = (1− e−t0)(Σ0 − Id).

Therefore, by the definition of (A) in (C.7) and t0 = n−
1−δ(n)
k+5 , we obtain

(A) = O
(
λmax(Σ0) · n−

1−δ(n)
k+5

)
. (C.8)

Bounding Term (B). Under the coupled SDE system (28), we have

(B) ≤
∥∥∥∥ERt0∼Pt0

[
Rt0R

⊤
t0

]
− E

Rt0∼ pPt0

[
Rt0R

⊤
t0

] ∥∥∥∥
op

+

∥∥∥∥ERt0∼Pt0
[Rt0]ERt0∼Pt0

[Rt0]
⊤ − E

Rt0∼ pPt0
[Rt0]ERt0∼ pPt0

[Rt0]
⊤
∥∥∥∥

op

=

∥∥∥∥E [(R←T−t0)(R←T−t0)⊤]− E
[
(pR←T−t0)(

pR←T−t0)
⊤
] ∥∥∥∥

op
(C.9)

+

∥∥∥∥E [R←T−t0]E [R←T−t0]⊤ − E
[

pR←T−t0

]
E
[

pR←T−t0

]⊤ ∥∥∥∥
op
, (C.10)

where the last equality invokes R←t and pR←t defined in (28). For term (C.9), we have

(C.9) ≤
∥∥∥E [(R←T−t0 − pR←T−t0)(R

←
T−t0)

⊤
]∥∥∥

op
+
∥∥∥E [(pR←T−t0)(R

←
T−t0 − pR←T−t0)

⊤
]∥∥∥

op

≤
√

E
∥∥R←T−t0 − pR←T−t0

∥∥2
2
·
(√

E
∥∥R←T−t0∥∥22 +√E

∥∥pR←T−t0

∥∥2
2

)
, (C.11)

53

where (C.11) follows from the Cauchy-Schwarz inequality and rearranging terms. Similarly, for
term (C.10), using the Cauchy-Schwarz inequality, we have

(C.10) ≤
∥∥∥(E [R←T−t0]− E[pR←T−t0])E

[
R←T−t0

]⊤∥∥∥
op

+
∥∥∥E[pR←T−t0](E [R←T−t0]⊤ − E[pR←T−t0]

⊤)
∥∥∥

op

≤
√

E
∥∥R←T−t0 − pR←T−t0

∥∥2
2
·
(√

E
∥∥R←T−t0∥∥22 +√E

∥∥pR←T−t0

∥∥2
2

)
, (C.12)

Then, substituting (C.11) and (C.12) into (C.9) and (C.10), we deduce that

(B) ≤ 2

√
E
∥∥R←T−t0 − pR←T−t0

∥∥2
2
·
(√

E
∥∥R←T−t0∥∥22 +√E

∥∥pR←T−t0

∥∥2
2

)
= O

(
(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
, (C.13)

where the last equality follows from applying the upper bound (29) in Lemma 3 and using the fact
that

E
∥∥R←T−t0∥∥22 = E

∥∥e−t0/2R0 +B1−e−t0

∥∥2
2
≤ e−t0E

∥∥R0

∥∥2
2
+ 1− e−t0 = O(1) and

E
∥∥pR←T−t0

∥∥2
2
≤ 2E

∥∥R←T−t0 − pR←T−t0
∥∥2
2
+ 2E

∥∥R←T−t0∥∥22 = O(1).

Bounding Term (C). Applying Lemma 3 to the estimated backward process starting from PT

and N (0, Id), respectively, we obtain

∥∥Σ̃t0 − qΣt0

∥∥
op = O

(
2E∥pR←T−t0 −R←T−t0∥

2
2

)
= O

(
(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
. (C.14)

Bounding Term (D). By introducing the estimation error between R̄0 and E[Ri], we have

(D) ≤
∥∥∥∥ 1

m− 1

m∑
i=1

(
(Ri − E[Ri])(Ri − E[Ri])

⊤
)
− qΣt0

∥∥∥∥
op

+

∥∥∥∥R̄0(R̄0 − E[Ri])
⊤
∥∥∥∥

op
+

∥∥∥∥(R̄0 − E[Ri])E[Ri]
⊤
∥∥∥∥

op

(i)

≤
∥∥∥∥ 1

m− 1

m∑
i=1

(
(Ri − E[Ri])(Ri − E[Ri])

⊤
)
− qΣt0

∥∥∥∥
op

+ ∥R̄0∥2∥R̄0 − E[Ri]∥2 + ∥R̄0 − E[Ri]∥2∥E[Ri]∥2
(ii)

≤
∥∥∥∥ 1

m− 1

m∑
i=1

(
(qΣt0)

−1/2(Ri − E[Ri])(Ri − E[Ri])
⊤(qΣt0)

−1/2 − Id

)∥∥∥∥
op

∥∥∥∥qΣt0

∥∥∥∥
op

+ ∥(qΣt0)
− 1

2 R̄0∥2∥(qΣt0)
− 1

2 (R̄0 − E[Ri])∥2∥qΣt0∥op

+ ∥(qΣt0)
− 1

2 (R̄0 − E[Ri])∥2∥(qΣt0)
− 1

2E[Ri]∥2∥qΣt0∥op,

54

where (i) follows from the Hölder inequality and (ii) holds due to the covariance normalization
using (qΣt0)

− 1
2 . Applying Theorem 3.1.1 and Theorem 4.6.1 of Vershynin (2018) to

(qΣt0)
−1/2(R̄0 − E[Ri]) and

1

m− 1

m∑
i=1

(qΣt0)
−1/2(Ri − E[Ri])(Ri − E[Ri])

⊤(qΣt0)
−1/2,

respectively, we obtain that with probability 1− δ, it holds

(D) = O
(
max

{√
d+

√
log(2/δ)√
m

,

(√
d+

√
log(2/δ)√
m

)2}
·
∥∥qΣt0

∥∥
op

)
= O

(
λmax(Σ0)(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
, (C.15)

where the last inequality the last inequality invokes the order of m in (27) and the fact that

∥∥qΣt0

∥∥
op ≤

∥∥qΣt0 − Σ̃t0

∥∥
op +

∥∥Σ̃t0 −Σt0

∥∥
op +

∥∥Σt0 −Σ0

∥∥
op +

∥∥Σ0

∥∥
op.

Summing up the upper bound of (A)–(D) in (C.8) and (C.13)–(C.15), we obtain the desired
result. □

C.2.2 Proof of Lemma 3

Proof. For notational simplicity, we denote psT−t(·) := psθ (·, T − t) and let pσ2min and pσ2max be the
minimal and maximal elements of c in psθ, respectively. First, by direct calculation, we obtain

dE∥R←t − pR←t ∥22
dt

= 2E
[(

R←t − pR←t

)⊤(1
2
R←t − 1

2
pR←t +∇ log pT−t (R

←
t)− psT−t(pR←t)

)]
= E∥R←t − pR←t ∥22 + 2E

[
(R←t − pR←t)⊤(∇ log pT−t (R

←
t)− psT−t(pR←t))

]
︸ ︷︷ ︸

(∗)

.

Consider g̃ζ : Rk × [0, T] → Rk, equivalent to gζ defined via transformation, defined as

g̃ζ(z, t) := gζ(V
⊤DtVz, t), (C.16)

where V, Dt, and gζ are components of psθ defined in (18). Note that the Lipschitz constant of the
ReLU network g̃ζ with respect to z is also on the order of γ defined in (22). Then, for term (∗),
we have

(∗) = E
[
(R←t − pR←t)⊤(∇ log pT−t (R

←
t)− psT−t(R

←
t))

]
+ E

[
(R←t − pR←t)⊤(psT−t(R

←
t)− psT−t(pR←t))

]
(i)

≤ E∥R←t − pR←t ∥22
4

+ E ∥psT−t (R
←
t)−∇ log pT−t (R

←
t)∥22

55

+ E
[
(R←t − pR←t)⊤D

1/2
T−t(αT−tγ1D

1/2
T−tV(V⊤DT−tV)−1V⊤D

1/2
T−t − I)D

1/2
T−t(R

←
t − pR←t)

]
(ii)

≤
(
1

4
+

(αT−tγ1 − 1)1{αT−tγ1 > 1}
hT−t + pσ2minα

2
T−t

+
(αT−tγ1 − 1)1{αT−tγ1 ≤ 1}

hT−t + pσ2maxα
2
T−t

)
E∥R←t − pR←t ∥22

+ E ∥psT−t (R
←
t)−∇ log pT−t (R

←
t)∥22 ,

where (i) holds due to the Cauchy-Schwarz inequality and the fact that psT−t(·) is γ1-Lipschitz; (ii)
follows from

λmax(αT−tγ1V(V⊤DT−tV)−1V⊤DT−t − I) = αT−tγ1 − 1,

and
1

hT−t + pσ2maxα
2
T−t

≤ ∥pDT−t∥op ≤ 1

hT−t + pσ2minα
2
T−t

.

Notice that αT−tγ1 ≤ 1 is equivalent to t ≤ T − 2 log γ1. By Grönwall’s inequality, we obtain

E∥R←T−t0 − pR←T−t0∥
2
2

≤
(
E∥R←0 − pR←0 ∥22 +

∫ T−t0

0
2E ∥psT−t (R

←
t)−∇ log pT−t (R

←
t)∥22 dt

)
· exp

(∫ T−2 log γ1

0

(
3

2
+

2(αT−tγ1 − 1)

hT−t + pσ2maxα
2
T−t

)
dt+

∫ T−t0

T−2 log γ1

(
3

2
+

2(αT−tγ1 − 1)

hT−t + pσ2minα
2
T−t

)
dt

)

=

(
E∥R←0 − pR←0 ∥22 +

∫ T−t0

0
2E ∥psT−t (R

←
t)−∇ log pT−t (R

←
t)∥22 dt

)
(C.17)

· exp
(
3

2
(T − t0) +

∫ 2 log γ1

t0

2(αwγ1 − 1)

hw + pσ2minα
2
w

dw +

∫ T

2 log γ1

2(αwγ1 − 1)

hw + pσ2maxα
2
w

dw

)
, (C.18)

where the last equality follows from rearranging the terms and a change of variable T − t = w.
Now we claim that∫ 2 log γ1

t0

2(αwγ1 − 1)

hw + pσ2minα
2
w

dw+

∫ T

2 log γ1

2(αwγ1 − 1)

hw + pσ2maxα
2
w

dw ≤ 4γ1
(
1− log(pσ2min + t0)

)
− 2(T − t0). (C.19)

To verify this, consider the integral

∫
αwγ1 − 1

hw + cα2
w

dw =



C − 2γ1 arctan(
√
c− 1e−w/2)√

c− 1
− log(ew + c− 1), ∀ c > 1 (C.20)

C − 2γ1e
−w/2 − w, c = 1 (C.21)

C −
γ1 log

(
1+e−w/2

√
1−c

1−e−w/2
√
1−c

)
√
1− c

− log(ew + c− 1), ∀ 0 < c < 1 (C.22)

56

1. For the case c > 1, note that

− log

(
eT + c− 1

et0 + c− 1

)
≤ −(T − t0) + log(1 + (c− 1)e−t0) ≤ log(c− (c− 1)t0)− (T − t0),

− arctan(
√
c− 1e−T/2)− arctan(

√
c− 1e−t0/2)√

c− 1
≤ e−t0/2 − e−T/2 ≤ 1.

(C.23)
Then, by substituting (C.23) into the integral (C.20), we obtain∫ T

t0

αwγ1 − 1

hw + cα2
w

dw ≤ 2γ1 + log(c− (c− 1)t0)− (T − t0). (C.24)

2. For the case c = 1, applying e−w/2 ≤ 1, we obtain that the integral in (C.21) satisfies∫ T

t0

αwγ1 − 1

hw + cα2
w

dw ≤ −2γ1(e
−T − e−t0)− (T − t0) ≤ 2γ1 − (T − t0). (C.25)

3. For the case 0 < c < 1, due to the continuity of the integral (C.22) with respect to c and the
bound in (C.25), we only need to focus on the case c ≪ 1. Without loss of generality, we
consider c < 1/2. By direct calculation, we have

− 1√
1− c

(
log

(
1 + e−T/2

√
1− c

1− e−T/2
√
1− c

)
− log

(
1 + e−t0/2

√
1− c

1− e−t0/2
√
1− c

))

≤ 1√
1− c

log

(
1 + e−t0/2

√
1− c

1− e−t0/2
√
1− c

)
≤

√
2(log 4− log(c+ t0)), (C.26)

where the last inequality follows from the fact that e−x ≤ 1/(1 + x),
√
1− c ≤ 1 − c/2, and

log((1 + x)/(1− x)) is increasing in x; and rearranging terms. Then, by substituting (C.23)
and (C.26) into (C.22), we obtain∫ T

t0

αwγ1 − 1

hw + cα2
w

dw ≤ 2γ1(1− log(c+ t0))− (T − t0). (C.27)

Combining the results in (C.24), (C.25), and (C.27), we verified the claim in (C.19). Finally,
applying the upper bound of score estimation in (29) and substituting (C.19) into (C.17) and
(C.18), we deduce that

E∥R←T−t0 − pR←T−t0∥
2
2

≤
(
E∥R←0 − pR←0 ∥22 + 2ϵ(T − t0)

)
· exp

(
3

2
(T − t0) + 4γ1(1− log(pσ2min + t0))− 2(T − t0)

)
= O

(
(1 + σkmax)d

5
4k

k+10
4 n−

1−δ(n)
k+5 log

5
2 n

)
,

57

where the last equality follows from invoking E∥R←0 − pR←0 ∥22 = O(e−T) and rearranging terms. □

C.2.3 Other Supporting Lemmas for Theorem 3

Lemma C.1. Suppose that Pdata is sub-Gaussian, and both psθ(r, t) and ∇ log pt(r) are Lipschitz
with respect to both r and t. Consider the score estimation error satisfying∫ T

t0

ERt∼Pt ∥psθ(Rt, t)−∇ log pt (Rt)∥22 dt = O(ϵ(T − t0)).

Then, the total variation distance is bounded by

TV(Pdata, pPt0) = O
(
dt0Ls(1 + σ2max) +

√
ϵ(T − t0) +

√
KL (Pdata∥N (0, Id)) exp(−T)

)
, (C.28)

where Pdata is the initial distribution of R in (8) and pPt0 is the marginal distribution of the backward
process pR←T−t0 in (4) starting from N (0, Id).

Proof of Lemma C.1. To estimate TV(Pdata, pPt0), we leverage the error decomposition in (25).
Recall that P̃t0 is the marginal distribution of pR←T−t0 in (4) initialized with pR←0 ∼ PT . In the
decomposition (25), TV(Pdata, Pt0) is the early stopping error, TV(Pt0 , P̃t0) is the statistical error
arising from the score estimation, and TV(P̃t0 ,

pPt0) is the mixing error of the forward process (1).

1. For term TV(Pdata, Pt0), applying the upper bound (C.34) with t = t0 in Lemma C.4, we
obtain

TV (Pdata, Pt0) = O(dt0). (C.29)

2. For term TV(Pt0 , P̃t0), by Pinsker’s inequality (Tsybakov 2009, Lemma 2.5) and the upper
bound of KL-divergence (C.33) in Lemma C.3, we have

TV(Pt0 , P̃t0) ≤ KL(Pt0 ||P̃t0) = O
(√

ϵ (T − t0)
)
. (C.30)

3. For term TV(P̃t0 ,
pPt0), by Pinsker’s inequality (Tsybakov 2009, Lemma 2.5) and Data pro-

cessing inequality (Thomas and Joy 2006, Theorem 2.8.1) , we deduce that

TV(P̃t0 ,
pPt0) ≤

√
KL(P̃t0∥ pPt0) ≤

√
KL (PT ∥N (0, Id)) = O

(√
KL (Pdata∥N (0, Id)) exp(−T)

)
,

(C.31)
where in the last inequality, we use the exponential mixing property of the O-U process.

Substituting the upper bounds (C.29), (C.30), and (C.31) into (25), we obtain the desired result.
□

Lemma C.2 (Novikov’s condition). Under the assumptions in Lemma C.1, it holds

E(R←t)t∈[0,T−t0]

[
exp

(
1

2

∫ T−t0

0
∥psθ(R

←
t , t)−∇ log pT−t (R

←
t)∥22 dt

)]
<∞, (C.32)

58

where the expectation is taken over the backward diffusion process (R←t)t∈[0,T−t0] in (3).

Proof of Lemma C.2. The result follows from a straightforward calculation using the same
techniques as in (Chen et al. 2023, Lemma 11). □

Lemma C.3. Suppose that the assumptions in Lemma C.1 hold. When both the ground-truth and
learned backward processes start with R←0

d
= pR←0 ∼ PT , the KL-divergence between the laws of the

paths of the processes (R←t)0≤t≤T−t0 and (pR←t)0≤t≤T−t0 can be bounded by

KL(Pt0 ||P̃t0) = E
(
1

2

∫ T−t0

0
∥psθ (R

←
t , T − t)−∇ log pT−t (R

←
t)∥22 dt

)
= O

(
ϵ(T − t0)

)
. (C.33)

Proof of Lemma C.3. By Lemma C.2, the Novikov’s condition holds. Immediately, we obtain
the results by directly invoking Girsanov’s Theorem (Chen et al. 2022b, Theorem 6). □

Lemma C.4. Suppose that the assumptions in Lemma C.1 hold. Then, for any t < 1/d, we have

TV(Pdata, Pt) = O(dt). (C.34)

Proof of Lemma C.4. Given R0, Rt can be represented as

Rt = e−t/2R0 +

∫ t

0
e−(t−s)/2dWs,

where R0 and
∫ t
0 e
−(t−s)/2dWs are independent. Then, the density of Rt is given by

pt(r) =

∫
pdata(y)ϕ(r;αty, ht)dy.

Define
S(d, t) := O(

√
d+ log(1/t)) (C.35)

as a truncation radius and we have

TV (Pdata, Pt) =
1

2

∫
|pt(r)− pdata(r)| dr

≤ 1

2

∫
∥r∥2>S(d,t)

(
pt(r) + pdata(r)

)
dr (C.36)

+
1

2

∫
∥r∥2≤S(d,t)

∣∣∣∣ ∫ (pdata(y)ϕ(r;αty, ht)− pdata(r))dy

∣∣∣∣dr. (C.37)

By the density upper bound in (B.18) and Theorem 3.1 of Chazottes, Collet, and Redig (2019),
it holds that pdata and pt(r) are sub-Gaussian and there exists a constant A1 > 0 such that
(pt(r) + pdata(r)) ≤ exp(−A1∥r∥22/2).

For term (C.36), using the sub-Gaussian tail in Lemma 16 of Chen et al. (2023) and invoking

59

the order of S(d, t) in (C.35), we obtain that

(C.36) = O
(
2−

d
2 dS(d, t)d−2

A1Γ
(
d
2 + 1

) exp

(
−A1S(d, t)

2

2

))
= O

(
t exp (−A1d)

)
. (C.38)

For term (C.37), by taking a change of variable z := (r− αty)/
√
ht, we deduce that

(C.37) =
∫
∥r∥2≤S(d,t)

∣∣∣∣∫ (pdata(α
−1
t (r−

√
htz))ϕ(z;0, I)− pdata(r)

)
dz

∣∣∣∣dr
(i)
= O

(∫
∥r∥2≤S(d,t)

∣∣∣∣ ∫ (∇pdata(r)

(
tr

2
−
√
tz

)
ϕ(z;0, I)dz

∣∣∣∣dr (C.39)

+

∫
∥r∥2≤S(d,t)

∣∣∣∣12
(
tr

2
−
√
tz

)⊤
∇2pdata(r)

(
tr

2
−
√
tz

))
ϕ(z;0, I)dz

∣∣∣∣dr), (C.40)

where (i) involves the Taylor expansion α−1t = 1 + t/2 +O(t2), ht = t+O(t2) and the fact that

pdata(e
t/2(r−

√
htz)) = pdata(r) +∇pdata(r)

(
tr

2
−
√
tz

)
+

1

2

(
tr

2
−
√
tz

)⊤
∇2pdata(r)

(
tr

2
−
√
tz

)
.

The integrals associated with the kernel function ϕ(z;0, I) satisfy∫
pdata(r)ϕ(z;0, I)dz = pdata(r) (C.41)

and∫
∇pdata(r)

(
tr

2
−
√
tz

)
ϕ(z;0, I)dz =

t

2
∇ log pdata(r)rpdata(r) = O(t∥r∥2∥∇ log pdata(r)∥2 · pdata(r)).

(C.42)

Moreover, since the Hessian matrix satisfies the following property

∇2pdata(r) = (∇2 log pdata(r) +∇ log pdata(r)∇ log pdata(r)
⊤) · pdata(r), (C.43)

we deduce∫ (
1

2

(
tr

2
−
√
tz

)⊤
∇2pdata(r)

(
tr

2
−
√
tz

))
ϕ(z;0, I)dz

(i)
= tr

(
1

8
t2∇2pdata(r)rr

⊤ +
1

2
t∇2pdata(r)

)
(ii)
= tr

((
1

8
t2rr⊤ +

1

2
t

)
(∇2 log pdata(r) +∇ log pdata(r)∇ log pdata(r)

⊤) · pdata(r)

)
= O

(
(t2∥r∥22 + t) tr

(
(∇2 log pdata(r) +∇ log pdata(r)∇ log pdata(r)

⊤) · pdata(r)
))
. (C.44)

where (i) is follows from
∫
zz⊤ϕ(z;0, I)dz = Id and rearranging terms, and (ii) follows (C.43).

60

Therefore, by substituting (C.41), (C.42) and (C.44) into (C.39) and (C.40), we obtain that

(C.37) = O
(∫
∥r∥2≤S(d,t)

(
t∥r∥2∥∇ log pdata(r)∥2

+ tr
(
(t2∥r∥22 + t)(∇2 log pdata(r) +∇ log pdata(r)∇ log pdata(r)

⊤)
))
pdata(r)dr

)
(i)
= O

(
tS(d, t)

√
ER0∼Pdata [∥∇ log pdata(R0)∥22]

+ (t2S2(d, t) + t) tr

(∫
(∇2 log pdata(r) +∇ log pdata(r)∇ log pdata(r)

⊤)pdata(r)dr)

))
(ii)
= O

(
t
√
dS(d, t) + t2dS2(d, t) · Ls(σ

2
max + 1)

)
= O

(
dtLs(σ

2
max + 1)

)
. (C.45)

where (i) is due to the Cauchy-Schwarz inequality and ∥r∥2 ≤ S(d, t), and (ii) invokes the upper
bound (C.46) in Lemma C.5.

Combining the upper bound of (C.36) and (C.37) in (C.38) and (C.45), we obtain the desired
result. □

Lemma C.5. Suppose Assumptions 1-3 holds. Then, it holds

ER0∼Pdata
∥∇ log pdata(R0)∥22 = O(dLs(σ

2
max + 1)). (C.46)

Proof of Lemma C.5.
Taking t = 0 in the formula of ∇ log pt in (12) of Lemma 1, we have

∇ log pdata(r) = ssub(Γ0β
⊤Λ−10 r, 0)−Λ

− 1
2

0 (I−Λ
− 1

2
0 βΓ0β

⊤Λ
− 1

2
0)Λ

− 1
2

0 r.

Under Assumption 3, for any r1, r2 ∈ Rd, it holds that

∥∇ log pdata(r1)−∇ log pdata(r2)∥2 ≤ Ls∥Γ0β
⊤Λ−10 ∥op∥r1 − r2∥2 + ∥Λ−10 ∥op∥r1 − r2∥2

≤ Ls(σ
2
max + 1)

σ2d
· ∥r1 − r2∥2, (C.47)

where the last equality follows from ∥Γ0∥op ≤ σ2max and ∥Λ−10 ∥op ≤ 1/σ2d. This indicates that the
Lipschitz constant of ∇ log pdata is bounded by Ls(1 + σ2max)/σ

2
d.

Furthermore, we have

ER0∼Pdata

[
∥∇ log pdata(R0)∥22

]
= tr

(∫
∇ log pdata(r)∇ log pdata(r)

⊤pdata(r)dr

)
(i)
= tr

(
−
∫

∇2 log pdata(r)
⊤pdata(r)dr

)
= O(dLs(σ

2
max + 1)),

where (i) is due to the integration by parts and the last inequality follows from invoking (C.47). □

61

D Additional Details of the Numerical Study with Synthetic Data

Here we explain additional details of the numerical experiment setup for Section 6. Following Bai
and Ng (2002, 2023), we construct the ground-truth environment of high-dimensional asset returns
using a latent factor model. Specifically, the universe consists of d = 2048 assets, whose returns are
driven by k = 16 latent factors. Here, the choice of d as a power of 2 enhances the computational
efficiency.

Denote µF = (µF1, µF2, . . . , µFk) as the expected return and ΣF = diag{σ2F1, σ
2
F2, . . . , σ

2
Fk}

the covariance matrix of the latent factor. In addition, denote Σε = diag{σ2ε1, σ2ε2, . . . , σ2εd} as the
covariance of the idiosyncratic noise of the asset. We then construct samples from the ground-truth
environment as follows:

1. Latent Factor. The components of µF are drawn i.i.d. from Uniform(0, 0.1) and we set
σFi = 1.5µFi for i = 1, 2, . . . , k to ensure that the volatility scales proportionally to the
corresponding mean.

2. Factor Loadings. We generate the factor loading matrix β ∈ Rd×k, where each element
is drawn i.i.d. from N (0, 1), ensuring that the loadings are symmetrically distributed with
comparable magnitudes across assets and factors.

3. Idiosyncratic Risk. {σεi}di=1 are drawn i.i.d. from Uniform(0, 0.4), ensuring uncorrelated
idiosyncratic returns across assets.

4. Asset Return. We generate a total of 213 = 8192 simulated samples. Asset returns are
sampled i.i.d. according to the following procedure. First, the factor is drawn from a multi-
variate normal distribution F ∼ N (µF ,ΣF). Then the asset-specific noise terms are drawn
i.i.d. from ε ∼ N (0,Σε). Finally, the asset return is constructed by R = βF+ ε. We denote
by µRi and σRi the mean and standard deviation of the ground-truth return for asset i, where
i = 1, 2, . . . , d.

Summary Statistics of the Synthetic Data. To show that our simulation setting is close
to the realistic market scenario, we benchmark our simulation set-up against the S&P 500 index.
Specifically, denote by µS&P 500,i and σS&P500,i the mean and standard deviation of historical returns
for stock i in the S&P 500 index over the period 2000–2020. Table D.1 reports the summary
statistics of {µRi}di=1 and compares them with {µS&P500,i}500i=1. The range of both the simulated
mean and standard deviation of returns closely matches that of the empirical quantities of stocks
in the S&P 500 index.

In addition, the variance of the factors accounts for 50.42% of the total variance in our synthetic
data, which corresponds to the population R-squared.

Data Preprocessing. We preprocess the data in the following steps.

62

Table D.1: Summary statistics for simulation return data and comparison with S&P 500 over the
period 2000-2020.

Mean Std Min 25% 50% 75% Max

Synthetic {µRi} 0.000 0.235 -0.809 -0.154 -0.007 0.155 0.751
S&P 500 {µS&P500,i} 0.070 0.234 -0.817 -0.057 -0.124 0.182 0.929
Synthetic {σRi} 0.475 0.126 0.243 0.377 0.473 0.576 0.739
S&P 500 {σS&P500,i} 0.380 0.142 0.203 0.273 0.345 0.450 0.725

1. First, we sort the asset returns by their variance, prioritizing those with greater variability
for subsequent analysis.

2. Next, we normalize the data by subtracting the mean return of each asset and reshape the
data from a one-dimensional vector of length 211 into a two-dimensional matrix of size (25, 26).
This reshaping step ensures compatibility with the 2D-Unet architecture and allows the model
to effectively leverage spatial hierarchies in the data.

Training. We train our diffusion factor model using a 2D-UNet architecture (Ronneberger, Fis-
cher, and Brox 2015), which is a convolutional encoder-decoder network with skip connections that
is well suited for capturing spatial structures. The model has approximately one billion parameters
and is trained to approximate the score function by minimizing the empirical loss defined in (7). To
assess performance under varying levels of data availability, we set the number of training samples
to be N = 29, 210, . . . , 213, and use the trained model to generate 213 new samples. Each experiment
is repeated five times to ensure robustness.

E Additional Details of the Empirical Analysis

Here we explain additional details of our empirical experiments in Section 7.

Data Selection and Preprocessing. We select and preprocess the stock return data in the
following steps:

1. We first exclude stocks with more than 5% missing values and then select the 512 stocks with
the largest market capitalizations from the remaining universe.

2. Rank the selected stocks by return volatility in descending order.

3. Within each rolling window of the training data, we standardize the returns by subtracting
the (empirical) mean and dividing by the (empirical) standard deviation for each stock.

4. Winsorize returns for each stock at 2.5% each side by resampling non-extreme values with
the same sign, which preserves the empirical distribution while mitigating the influence of
outliers (Tukey 1962).

63

Training and Sampling. We employ a 2D-UNet architecture with approximately one billion
parameters to train our diffusion factor model. Following a similar setup as Lyu et al. (2022), we
set the total number of training steps to T = 200 and apply early stopping at T ′ = 180 for the
sampling of time-reversed process (4).

Performance Evaluations. Here, we specify the performance evaluation metrics used in Sec-
tion 7.

1. SR is defined as µ̂/σ̂, where µ̂ and σ̂ denote the sample mean and standard deviation, respec-
tively, of excess portfolio returns over the testing periods.

2. CER is defined as µ̂− 1
2ησ̂

2, where η is the risk aversion parameter.

3. MDD is defined as
MDD = max

t∈Dt

(
maxs≤t Vs − Vt

maxs≤t Vs

)
,

where Dt contains all the dates of the test set and Vt denotes the portfolio value on day t.

4. TO on day t is defined as

TOt =
∑
i∈At

∣∣∣∣∣wi,t −
wi,t−1(1 + ri,t−1)∑N
i=1wi,t−1(1 + ri,t−1)

∣∣∣∣∣ ,
where At contains all assets of the test set on day t, wi,t is the target weight of stock i on day
t, and ri,t denotes the return of stock i on day t.

We visualize the return distribution generated by our diffusion factor model for selected assets
in Figure E.1 (trained on data from May 1, 2009 to April 30, 2014), which is compared with the
observed training data. The generated data distribution is smoother and closely approximates the
empirical distribution.

Robustness Analysis. For η = 3, we report out-of-sample portfolio performance under the
scenario without transaction costs in Table E.1. The Diff Emp+Diff Emp outperforms all other
methods, achieving the highest Mean, SR, and CER. These results are consistent with those ob-
served under the scenario with transaction costs.

For the case of η = 5, we report out-of-sample portfolio performance under scenarios with and
without transaction costs in Table E.2 and plot the cumulative returns with transaction cost (in
log scale) in Figure E.2. The Diff Emp+Diff Emp outperforms all other methods, achieving the
highest Mean, SR, and CER. These results are consistent with those observed in the case of η = 3.

64

Figure E.1: Examples of asset return distribution (the blue histogram is constructed using samples
generated from the diffusion model and the green one uses actual data samples.)

(a) The asset with the largest variance. (b) The asset with the smallest variance.

(c) The asset with the largest mean. (d) The asset with the smallest mean.

Table E.1: Performance of different portfolios without transaction costs for η = 3.
Method Mean Std SR CER MDD (%) TO

Methods based on real observed data

EW 0.102 0.221 0.462 0.029 58.114 3.273
VW 0.098 0.218 0.448 0.026 61.400 3.717
Real Emp+Real Emp 0.087 0.142 0.611 0.057 34.651 38.120
Real BS+Real Emp 0.078 0.140 0.553 0.048 31.806 37.344
Real OLSE+Real Emp 0.090 0.144 0.625 0.059 35.069 38.112
Real Emp+Real LW 0.085 0.134 0.635 0.058 31.475 32.143
Real BS+Real LW 0.076 0.133 0.569 0.049 31.963 31.540
Real OLSE+Real LW 0.086 0.136 0.632 0.058 35.529 32.417

Methods based on diffusion-generated data

Diff Emp+Diff Emp 0.189 0.192 0.983 0.133 42.406 17.507
Diff BS+Diff Emp 0.185 0.190 0.972 0.131 42.021 17.203
Diff OLSE+Diff Emp 0.184 0.190 0.970 0.130 41.990 17.168
Diff Emp+Diff LW 0.155 0.169 0.917 0.112 38.046 16.332
Diff BS+Diff LW 0.152 0.168 0.906 0.110 37.908 16.115
Diff OLSE+Diff LW 0.152 0.168 0.904 0.110 37.897 16.090

Methods based on both real observed data and diffusion-generated data

Real Emp+Diff Emp 0.124 0.148 0.840 0.091 31.057 16.752
Diff Emp+Real Emp 0.113 0.167 0.676 0.071 34.043 23.360

65

Table E.2: Performance of different portfolios with and without transaction costs for η = 5.
Method Mean Std SR CER MDD (%) TO

Panel A: Without Transaction Costs

Methods based on real observed data

EW 0.102 0.221 0.462 -0.020 58.114 3.273
VW 0.098 0.218 0.448 -0.021 61.400 3.717
Real Emp+Real Emp 0.080 0.140 0.568 0.030 32.223 38.121
Real BS+Real Emp 0.074 0.140 0.525 0.024 32.181 37.243
Real OLSE+Real Emp 0.061 0.142 0.426 0.010 33.213 37.553
Real Emp+Real LW 0.078 0.133 0.584 0.033 31.312 32.143
Real BS+Real LW 0.072 0.133 0.542 0.028 32.301 31.452
Real OLSE+Real LW 0.058 0.135 0.430 0.013 33.637 31.901

Methods based on diffusion-generated data

Diff Emp+Diff Emp 0.155 0.167 0.925 0.085 45.760 17.647
Diff BS+Diff Emp 0.153 0.166 0.920 0.084 45.951 16.996
Diff OLSE+Diff Emp 0.152 0.166 0.918 0.084 45.937 16.970
Diff Emp+Diff LW 0.140 0.156 0.901 0.080 42.809 16.440
Diff BS+Diff LW 0.139 0.155 0.896 0.079 42.719 15.907
Diff OLSE+Diff LW 0.139 0.155 0.894 0.079 42.709 15.892

Methods based on both real observed data and diffusion-generated data

Real Emp+Diff Emp 0.124 0.147 0.848 0.071 33.164 16.887
Diff Emp+Real Emp 0.084 0.149 0.566 0.029 31.205 18.639

Panel B: With Transaction Costs

Methods based on real observed data

EW 0.096 0.221 0.433 -0.026 58.807 3.273
VW 0.090 0.218 0.414 -0.029 62.127 3.717
Real Emp+Real Emp 0.005 0.143 0.035 -0.046 39.696 38.121
Real BS+Real Emp -0.001 0.142 -0.005 -0.051 40.889 37.243
Real OLSE+Real Emp -0.014 0.144 -0.100 -0.066 41.295 37.553
Real Emp+Real LW 0.014 0.135 0.107 -0.031 33.287 32.143
Real BS+Real LW 0.009 0.135 0.068 -0.036 35.225 31.452
Real OLSE+Real LW -0.006 0.136 -0.042 -0.052 40.965 31.901

Methods based on diffusion-generated data

Diff Emp+Diff Emp 0.128 0.167 0.766 0.058 47.549 17.647
Diff BS+Diff Emp 0.127 0.166 0.762 0.057 47.720 16.996
Diff OLSE+Diff Emp 0.126 0.166 0.760 0.057 47.704 16.970
Diff Emp+Diff LW 0.114 0.156 0.732 0.053 44.622 16.440
Diff BS+Diff LW 0.113 0.156 0.727 0.053 44.518 15.907
Diff OLSE+Diff LW 0.113 0.156 0.726 0.052 44.508 15.892

Methods based on both real observed data and diffusion-generated data

Real Emp+Diff Emp 0.099 0.147 0.673 0.045 35.558 16.887
Diff Emp+Real Emp 0.043 0.149 0.288 -0.013 36.045 18.639

66

Figure E.2: Cumulative returns of different portfolios in log scale with transaction cost for η = 5.

67

	Introduction
	Our Work and Contributions
	Related Literature
	Notation

	Problem Set-up for Diffusion Factor Models
	Generative Diffusion Models
	Asset Returns and Unknown Factor Structure

	Score Decomposition under Diffusion Factor Model
	Score Decomposition
	Choosing Score Network Architecture

	Score Approximation and Estimation
	Theory of Score Approximation
	Theory of Score Estimation

	Theory of Distribution Estimation
	Numerical Study with Synthetic Data
	Empirical Analysis
	Mean-Variance Optimal Portfolio
	Factor Portfolio

	Conclusion
	Omitted Proof in Section 3
	Omitted Proofs in Section 4
	Proof of Theorem 1
	Proof of Theorem 2
	Supporting Lemmas and Proofs

	Omitted Proofs in Section 5
	Proof of Theorem 3
	Supporting Lemmas for Theorem 3
	Proof of Lemma 2
	Proof of Lemma 3
	Other Supporting Lemmas for Theorem 3

	Additional Details of the Numerical Study with Synthetic Data
	Additional Details of the Empirical Analysis

