arXiv:2503.24322v2 [cs.LG] 17 Aug 2025

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

NOPROP: TRAINING NEURAL NETWORKS WITHOUT FULL
BACK-PROPAGATION OR FULL FORWARD-PROPAGATION

Qinyu Li Yee Whye Teh Razvan Pascanu
Department of Statistics Department of Statistics Mila
University of Oxford University of Oxford r.pascanu@gmail.com
ginyu.li@stats.ox.ac.uk y.w.teh@stats.ox.ac.uk

ABSTRACT

The canonical deep learning approach for learning requires computing a gradient term at each block
by back-propagating the error signal from the output towards each learnable parameter. Given the
stacked structure of neural networks, where each block builds on the representation of the block
below, this approach leads to hierarchical representations. More abstract features live on the top
blocks of the model, while features on lower blocks are expected to be less abstract. In contrast to
this, we introduce a new learning method named NoProp, which does not rely on either forward or
backwards propagation across the entire network. Instead, NoProp takes inspiration from diffusion
and flow matching methods, where each block independently learns to denoise a noisy target using
only local targets and back-propagation within the block. We believe this work takes a first step to-
wards introducing a new family of learning methods, that does not learn hierarchical representations
— at least not in the usual sense. NoProp needs to fix the representation at each block beforehand
to a noised version of the target, learning a local denoising process that can then be exploited at
inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-
100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm,
is easy to use and computationally efficient. By departing from the traditional learning paradigm
which requires back-propagating a global error signal, NoProp alters how credit assignment is done
within the network, enabling more efficient distributed learning as well as potentially impacting
other characteristics of the learning process.

1 INTRODUCTION

Back-propagation (Rumelhart et al., 1986) has long been a cornerstone of deep learning, and its application has enabled
deep learning technologies to achieve remarkable successes across a wide range of domains from sciences to industries.
Briefly, it is an iterative algorithm, which adapts the parameters of a multi-block neural network at each step such that
its output match better a desired target. In this paper, we define a block as either a single layer or a group of consecutive
layers within a neural network. Each step of back-propagation first performs a forward-propagation of the input signal
to generate a prediction, then compares the prediction to a desired target, and finally propagates the error signal back
through the network to determine how the weights of each block should be adjusted to decrease the error. This way,
each block can be thought of as learning to change the representation it receives from the block below it to one that
subsequent blocks can use to make better predictions. The error signal propagated backwards is used to do credit
assignment, i.e. to decide how much each parameter needs to change in order to minimize the error.

The simplicity of back-propagation has made it the de facto method for training neural networks. However over the
years there has been consistent interest in developing alternative methods that do not rely on back-propagation. This
interest is driven by several factors. Firstly, back-propagation is biologically implausible, as it requires synchronised
alternation between forward and backward passes (e.g Lee et al., 2015). Secondly, back-propagation requires storing
intermediate activations during the forward pass to facilitate gradient computation in the backward pass, which can
impose significant memory overheads (Rumelhart et al., 1986). Finally, the sequential propagation of gradients intro-
duces dependencies that impede parallel computation, making it challenging to effectively utilize multiple devices and
servers for large-scale machine learning (Carreira-Perpinan & Wang, 2014). This sequential nature of how the credit
assignment is computed has also additional implications for learning, leading to interference (Schaul et al., 2019) and
playing a role in catastrophic forgetting (Hadsell et al., 2020).

Alternative optimization methods to back-propagation include gradient-free methods (e.g., direct search meth-
ods (Fermi, 1952; Torczon, 1991) and model-based methods (Bortz & Kelley, 1997; Conn et al., 2000)), zero-order

https://arxiv.org/abs/2503.24322v2

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Zp —> Uy Zy —> Up -+ Ur.g ZT.; —> ur T —> y

| 1 |

X X X X

Figure 1: Architecture of NoProp. z represents Gaussian noise, while 21, ..., zp are successive transformations of
zo through the learned dynamics u;, ..., ur, with each block conditioned on the image x, ultimately producing the
class prediction g.

gradient methods (Flaxman et al., 2004; Duchi et al., 2015; Nesterov & Spokoiny, 2015; Liu et al., 2020; Ren et al.,
2022), evolution strategies (Wierstra et al., 2014; Salimans et al., 2017; Such et al., 2017; Khadka & Tumer, 2018),
methods that rely on local losses such as difference target propagation (Lee et al., 2015) and the forward-forward algo-
rithm (Hinton, 2022). However, such approaches often retain standard neural network architectures and seek only to
modify the optimization algorithm, and frequently fall short of back-propagation in terms of accuracy, computational
efficiency and scalability.

In this paper, we explore an alternative path, rethinking both the architecture and the training process. We propose
a novel training framework that avoids global back-propagation across network blocks, based on the denoising score
matching approach that underlies diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021).
Unlike prior methods that approximate or replace back-propagation within standard architectures, NoProp employs a
block-wise design where inputs are broadcast to each block, allowing each block to be trained independently using
only local back-propagation. In brief, at training time each block is trained to predict the target label given a noisy
label and the training input using back-propagation within the block, while at inference time each block takes the noisy
label produced by the previous block, and denoises it by taking a step towards the label it predicts. This design avoids
full forward and backward passes across the entire network, enabling block-local updates with minimal coordination,
such as shared embeddings. While NoProp still uses back-propagation within blocks, its local training structure makes
it more biologically plausible than full back-propagation and naturally suited for parallel and distributed training.
We evaluate NoProp on MNIST, CIFAR-10, and CIFAR-100, demonstrating performance comparable to full back-
propagation within the architecture we study. We also show that NoProp achieves better performance and efficiency
than the adjoint sensitivity method used for training neural ordinary differential equations (Neural ODEs) (Chen et al.,
2018). While direct comparisons to other methods are limited by architectural differences, our aim is to show that
local learning strategies inspired by generative models can be effectively applied to supervised learning. Although we
have not fully explored scaling NoProp to larger datasets or more complex domains, we view NoProp as an early step
toward more efficient, biologically-inspired, modular, and parallelizable alternatives to end-to-end back-propagation.

2 METHODOLOGY

In this section we will describe the NoProp method for learning without full forward- or back-propagation. While the
technical ideas are an application of variational diffusion models (Sohl-Dickstein et al., 2015; Kingma et al., 2021;
Gulrajani & Hashimoto, 2024), we apply them in the context of alternative methods to end-to-end back-propagation,
and interpret them differently as enabling learning without full forward or backward passes.

2.1 NoPRror

Let x and y be a sample input-label pair in our classification dataset, assumed drawn from a data distribution go(z, y),
and zg,21,...,27 € R% be corresponding stochastic intermediate activations of a neural network with 7" blocks,
which we aim to train to estimate go(y|z).

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

We define two distributions p and ¢ decomposed in the following ways:
P(Gz0)0s9l2) = p(z0) (T platlzer)) plylor). M

a((z) olys2) = alerly) (T a(-a]20)) @

The distribution p can be interpreted as a stochastic forward propagation process which iteratively computes the next
activation z; given the previous one z;_; and the input z. In fact, we shall see that it can be explicitly given as a
residual network with Gaussian noise added to the activations:

ze = aplp, (21, %) + bezi—1 +/crer, € ~ Na(e]0,1) 3)
where Ay (+]0, 1) is a d-dimensional Gaussian density with mean vector 0 and identity covariance matrix, a;, by, ¢; are
scalars (given below), b;z; 1 is a weighted skip connection, and g, (2:—1,) being a residual block parameterised by
0;. Note that this computation structure is different from a standard deep neural network which does not have direct
connections from the input z into each block.

Following the variational diffusion model approach, we can alternatively interpret p as a conditional latent variable
model for y given x, with the z;’s being a sequence of latent variables. We can learn the forward process p using a
variational formulation, with the ¢ distribution serving as the variational posterior. The objective of interest is then the
ELBO, a lower bound of the log likelihood log p(y|z) (a.k.a. the evidence):

log p(yl) > By o7 1) 108 0((20)1=0: ylx) —log a((z0){oly,)] - (4)

See Appendix A.l for the derivation of Equation 4. Following Sohl-Dickstein et al. (2015); Kingma et al. (2021),
we fix the variational posterior g to a tractable Gaussian distribution; here we use the variance preserving Ornstein-
Uhlenbeck process:

q(zr|y) = Na(zr|aruy, 1 — ar), q(zi-1lzt) = Na(zeoa1|/ou—12t, 1 — oqq) (5)

where u,, is an embedding of the class label 3 in R?, defined by a trainable embedding matrix Wgypeq € R™*? with
m as the number of classes. The embedding is given by u, = {Wgmped }y. Using standard properties of the Gaussian,
we can obtain

q(zely) = Na(ze|vVaruy, 1 — ay), q(zt)ze-1,y) = Na(ze|pe (ze—1, uy),) (6)
with a; = Hf:t g, e (Z4—1,Uy) = Gty + bpzp_1, ap = 7@9&??1), by = ‘@f,l__lat)’ and ¢; = 7(1_&11'_)%__?“1)-

See Appendix A.2 and A.3 for a full derivation. To optimise the ELBO, we parameterise p to match the form for ¢:

p(2t|ze—1,2) = Na(zelpe(2ze—1, 0, (26-1, 7)), ¢t), p(20) = Na(20[0, 1) (7
where p(z) has been chosen to be the stationary distribution of the Ornstein-Uhlenbeck process, and g, (2:—1,) is
a neural network block parameterised by 6;. The resulting computation to sample z; given z;_; and x is as given in
by the residual architecture (Equation 3), with ay, b, c¢; as specified above. Finally, plugging this parameterisation into
the ELBO (Equation 4) and simplifying, we obtain the NoProp objective,

£NOProp :Eq(ley) [_ logﬁeou[(ylzT)]

+ Dx1(q(20ly)llp(20))
T
+ EnEtNZ/{{LT} [(SNR(t) — SNR(t — 1))|d, (2t-1, %) — uy|?] , ®)

where SNR(t) = li’jit is the signal-to-noise ratio, 1 is a hyperparameter, and /{1, T'} is the uniform distribution on

the integers 1,...,T. See Appendix A.4 for a full derivation of the NoProp objective.

We see that each 1, (z¢—1,) is trained to directly predict u, given z;_; and = with an L2 loss, while py,, (y|2r) is
trained to minimise cross-entropy loss. Each block g, (2¢—1, x) is trained independently, and this is achieved without
full forward- or back-propagation across the entire network.

2.2 VARIATIONS

2.2.1 FIXED AND LEARNABLE Wgmbed

The class embedding matrix Wgypeq can be either fixed or jointly learned with the model. In the fixed case, we set
WEmbed to be the identity matrix, where each class embedding is a one-hot vector. In the learned case, Wgmpbed 1S
initialized as an orthogonal matrix when possible, or randomly otherwise. When the embedding dimension matches
the image dimension, we interpret this as learning an “image prototype.” In this special case, class embeddings are
initialized as the images with the smallest median distance to all other images within the same class, serving as crude
prototypes before training.

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

2.2.2 CONTINUOUS-TIME DIFFUSION MODELS AND NEURAL ODES

The NoProp framework presented above involves learning g, (2:—1, z) parameterised by 6; for each time step ¢ =
1,2,...,T along with a linear layer for pg , (y|z7). We can extend this to a continuous version where the number of
latent variables 1" tends to infinity (Kingma et al., 2021), leading to the objective

. 1 N
Eq(a11y) [108 Do (v121)] + D (a(z0ly) 1p(20)) + 57Eenraio, 1) [SNR'()[[0 (22, 7,1) = uy||] - ©)

See Appendix A.4 for a full derivation. Here, time ¢ is treated as a continuous variable in [0, 1]. We use a continuous
noise schedule and SNR’(¢) denotes the derivative of the signal-to-noise ratio. A single block g (24, x, t) is trained for
all time steps ¢, with ¢ as an additional input. The evolution of latent variables z; follows a continuous-time diffusion
process, described by a stochastic differential equation (SDE). Note that there exits a corresponding ordinary differ-
ential equation (ODE) %zt = f(zt|x,t) sharing the same marginal distributions as the SDE (Song et al., 2021). The
function f(z¢|x,t) represents the deterministic vector field generating z;’s evolution. Neural networks parameterised
in this manner are known as neural ODEs (Chen et al., 2018).

Neural ODE training usually relies on back-propagating through the ODE solver to optimize task-specific loss func-
tions (e.g., cross-entropy in classification), or using the adjoint sensitivity method (Chen et al., 2018) which estimates
the gradient by solving another ODE backward in time. The continuous-time diffusion model instead learns an ODE
dynamic that inverts a predefined noising process. Training occurs by sampling time steps independently, without
requiring full forward or backward passes through time. This makes training more efficient while still enabling ex-
pressive ODE dynamics.

2.2.3 FLOW MATCHING

An alternative approach to NoProp’s continuous formulation is flow matching (Lipman et al., 2022; Tong et al., 2023),
which directly learns the vector field f(z;|z, t) that transports noise toward the predicted label embedding via an ODE.
Since f(z¢|z,t) is generally unknown, flow matching instead learns the conditional vector field f(z:|zo, 2z1,2,1),
where zg is the initial noise and z; = wu, is the label embedding. The conditional vector field is user-specified. A
simple choice is to define a Gaussian probability path between noise zg and label embedding z; = u,

pe(2t|20, 21, 7) = Ng(z¢ | tzs + (1 — t)z0,02), (10)
with the corresponding vector field f(z;|zo, 21, z,t) = 21 — 2¢. The flow matching objective is then

Etntt[0,1]40(2.) p(z0) w1 (s1120,2,0) [00 (2, 2, 8) = (21 = 20) 1%, (11)
where vg(2¢, x, t) is a neural network with parameters . When the label embeddings are jointly learned, we introduce
an additional anchor loss to prevent different class embeddings from collapsing. Following prior work (Gao et al.,
2022; Hu et al., 2024), we incorporate a cross-entropy term —logpy, . (v | Z1(2¢,2,t)), where Z1 (24, z,t) is an
extrapolated linear estimate

Z1(ze, m,t) = 20 + (1 — t)vg(z, 2, 1). (12)
The modified flow matching objective is
EtNZ/{[O,l],qo(x,y),p(zo),pt(zt|z0,zl,z)[||v9(zt7 x, t) - (Zl - ZO)H2 - logpeout (y | 21 (zta z, t))] (13)

Similarly to diffusion, we parameterise pg_, (v | Z1(2t, 2, t)) using a linear layer followed by softmax. This formula-
tion ensures well-separated class embeddings.

2.3 IMPLEMENTATION DETAILS
2.3.1 ARCHITECTURE

The NoProp architecture is illustrated in Figure 1. During inference, Gaussian noise zy undergoes a sequence of
transformations through the diffusion process. At each step, the latent variable z; evolves via a diffusion dynamic
block wy, producing a sequence 21, 29, . . ., zr until reaching zp. Each u; is conditioned on the previous latent state
z¢—1 and the input image x. Finally, a linear layer followed by a softmax function maps 27 to the predicted label 3.
The model used to parameterise each wu; block is described in Section 2.3.2.

This architecture is designed specifically for inference. During training, time steps are sampled, and each diffusion
dynamic block wu; is trained independently. The linear layer and the embedding matrix are trained jointly with the
diffusion blocks, as the linear layer helps prevent the class embeddings from collapsing.

For the flow matching variant, the u;’s in Figure 1 represent the ODE dynamics. The label prediction ¢ is obtained
directly from 2z by finding the class embedding closest to zz in terms of Euclidean distance.

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

2.3.2 TRAINING PROCEDURE

Models The models used for training are illustrated in Figure 5 in the Appendix. For discrete-time diffusion, we use a
neural network g, to model the diffusion dynamics u;. The model takes an input image = and a latent variable z;_; in
the label embedding space, processing them through separate embedding pathways before concatenation. The image
x is passed through a convolutional embedding module followed by a fully connected layer. When the embedding
dimension matches the image dimension, z;_1 is treated as an image and embedded similarly using a convolutional
module. Otherwise, z;_1 is passed through a fully connected network with skip connections. The fused representation
is then processed by additional fully connected layers, producing logits. We then apply a softmax function to the logits,
yielding a probability distribution over class embeddings. The final output of 1y, is then computed as a weighted sum
of the class embeddings in Wgypeq using this probability distribution.

For continuous-time diffusion, we train w9, which takes an additional timestamp ¢ as input. The timestamp is encoded
using positional embeddings and processed through a fully connected layer before being concatenated with those of x
and z;. The rest of the model follows roughly the same structure as in the discrete case.

For flow matching, we train a neural network 9y. The architecture remains the same as in the continuous-time diffusion
case, but instead of applying softmax, 0y is obtained by directly computing the weighted sum of the class embeddings
using the logits, treating the logits as unrestricted weights. This allows ¥y to represent arbitrary directions in the
embedding space, unlike g, which is constrained to a convex combination of class embeddings.

While the overall model structure remains similar across settings, the inclusion of ¢ in the continuous-time diffusion
and flow matching cases introduces an additional input and processing step compared to the discrete-time diffusion
case. We choose to parameterise pg,, (y|2r) in Equation 8, py_, (y|z1) in Equation 9, and Py, (y | Z1(2t,2,t)) in
Equation 13 using a linear layer followed by softmax.

Noise schedule For discrete-time diffusion, we use a fixed cosine noise schedule. For continuous-time diffusion,
we train the noise schedule jointly with the model. Further details on the trainable noise schedule are provided in
Appendix B.

3 RELATED WORKS

3.1 ALTERNATIVE METHODS TO BACK-PROPAGATION

A wide range of alternatives to back-propagation have been proposed, aiming either to improve biological plausibility,
increase computational efficiency, or both. Below, we highlight key approahces and illustrate their weight updates in
Figure 2. One well-known limitation of backpropagation is the “weight transport problem” (Grossberg, 1987), which
refers to the biologically implausible requirement that the backward pass must have access to the exact weights used
in the forward pass. Feedback Alignment (Lillicrap et al., 2016) addresses this by replacing the backward weights
with fixed, random matrices. Although the network still relies on a top-down propagation of errors, this method avoids
symmetric weight transport, making it more biologically plausible. However, it does not reduce computational cost
since it still requires sequential backward passes.

Several optimization approaches avoid backward passes entirely by using only forward computations to update param-
eters. These include zeroth-order gradient estimators (Flaxman et al., 2004; Duchi et al., 2015; Nesterov & Spokoiny,
2015; Liu et al., 2020) and evolutionary strategies (Wierstra et al., 2014; Salimans et al., 2017; Khadka & Tumer,
2018). Evolution strategies are inspired by natural selection and operate without gradient information, making them
well-suited for black-box optimization. However, they are typically sample-inefficient, especially in high-dimensional
spaces, and require large numbers of function evaluations. A related but more efficient alternative is forward gradient
descent (Baydin et al., 2022), which uses only forward passes to compute an unbiased estimate of the gradient and
reduces computational cost compared to back-propagation.

Another prominent class of methods focuses on block-wise local learning, where the network is divided into modules
or blocks that are trained independently using local objectives. These methods eliminate the need for error signals
to propagate through the entire network and are naturally amenable to parallel training. Early examples of this idea
appear in deep belief networks (Hinton et al., 2006). In more recent work, Direct Feedback Alignment (Ngkland,
2016) extends the original Feedback Alignment idea by applying independent random feedback paths to each block.
Greedy layerwise training with auxiliary networks (Belilovsky et al., 2019) appends auxiliary networks to each block
to optimize a supervised learning objective for that block. Clark et al. (2021) propose broadcasting a global error
signal to all hidden units, eliminating the need for unit-specific feedback. The Forward-Forward algorithm (Hinton,
2022) trains each block by contrasting its response to positive and negative examples.

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

NN
NG e

VDUV VN

X X bs bs
Back-propagation Flaxman et al. (2004) Lee etal. (2015) Balduzzi et al. (2014) NoProp (ours)
(Rumelhart et al. (1986)) Wierstra et al. (2014) Lowe etal. (2019) Nekland (2016)

Feedback Alignment Baydin et al. (2022) llling et al. (2021) Belilovsky et al. (2019)

(Lilicrap et al. (2016)) ~ Renetal. (2023) Tang etal. (2022) Clark et al. (2021)

Journé et al. (2022)
Halvagal & Zenke (2023)
Siddiqui et al. (2023)

Hinton (2022)

—— > Forward propagation path —— > Back-propagation path

Figure 2: Comparison of weight update strategies in end-to-end back-propagation and its alternatives. a Feedback
Alignment closely resembles standard end-to-end back-propagation. b A variety of optimization methods that elimi-
nate the need for backward passes entirely. ¢ After a forward pass, each block updates its weights using local unsu-
pervised or self-supervised objectives, while previous blocks are kept frozen. d Similar to ¢, but the target labels are
broadcast to each block, enabling local supervised updates. e NoProp broadcasts both the input and the labels to every
block, allowing each to update independently using only local back-propagation.

An alternative branch of block-wise methods relies on unsupervised or self-supervised local objectives. These ap-
proaches update each block independently to learn useful representations, which are later used for downstream su-
pervised learning. Examples include Hebbian learning and local learning rules based on reconstruction, contrastive
objectives, or predictive coding (Lowe et al., 2019; Illing et al., 2021; Tang et al., 2022; Journé et al., 2022; Halvagal
& Zenke, 2023; Siddiqui et al., 2023). These methods maintain biological plausibility through local updates, and they
are computationally efficient due to their potential for parallelism.

Several other approaches also decouple updates between layers or blocks. Ren et al. (2022) extend forward gradient de-
scent to a block-wise local training setting. Synthetic gradients (Jaderberg et al., 2017) train small networks to predict
the gradient at each layer, allowing for parallel updates. Kickback (Balduzzi et al., 2014) simplifies the gradient com-
putation by retaining only a global error signal. Target propagation (Lee et al., 2015)replaces error back-propagation
with a learned inverse function that propagates target activations back through the network. While these methods can
increase biological plausibility, their effectiveness often depends on the quality of the learned components, such as the
synthetic gradient models or inverse mappings.

Our method, NoProp, builds on the idea of block-wise local learning but differs in key ways. Both the input (e.g.,
an image in classification tasks) and the label are broadcast to each block of the network. The forward pass is pre-
determined by a noise schedule, so a full forward pass through the entire network is not required. Each block is
trained with a local objective using back-propagation internally, without relying on end-to-end gradient flow. When
label embeddings are fixed (e.g., using one-hot vectors), blocks can be updated independently, enabling parallel train-
ing and improving computational efficiency relative to standard back-propagation. If the label embeddings or noise
schedule are jointly learned with the model, some limited coupling between blocks is introduced, but the method still
avoids global back-propagation. In continuous-time settings, NoProp is also more efficient than approaches requir-
ing ODE simulations, such as the adjoint sensitivity method (Chen et al., 2018). Finally, because NoProp does not
rely on propagating a global error signal across the network, it offers greater biological plausibility than end-to-end
back-propagation.

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

3.2 DIFFUSION AND FLOW MATCHING

Several works in diffusion and flow matching are closely related to our method. Han et al. (2022) introduced classifi-
cation and regression diffusion models, Kim et al. (2025) proposed flow matching for paired data, and Hu et al. (2024)
applied flow matching to conditional text generation. In contrast, our paper explores the implications of these ideas
within the framework of alternative learning paradigms, building on the observation that diffusion and flow matching
methods do not require full forward and backward passes.

3.3 REPRESENTATION LEARNING

Generally speaking, most alternative methods to back-propagation, whether they simply approximate gradients differ-
ently, or utilize a different search scheme — as it is the case of evolution strategies — still rely on learning intermediate
representations that build on top of each other (Bengio et al., 2013). This allows learning more abstract representations
as we look at deeper blocks of the model, and is thought to be of fundamental importance for deep learning and for
representing cognitive processes (Markman & Dietrich, 2000). Indeed, initial successes of deep learning have been
attributed to the ability to train deep architectures to learn hierarchical representations (Hinton et al., 2006; Bengio
et al., 2013), while early interpretability work focused on visualising these increasingly more complex features (Zeiler
& Fergus, 2014; Lee et al., 2009).

By getting each block to learn to denoise labels, with the label noise distribution chosen by the user, we can argue that
NoProp does not learn global representations across blocks. Rather, it relies on representations designed by the user
(specifically, the representations in intermediate blocks are Gaussian noised embeddings of target labels for diffusion,
and an interpolation between Gaussian noise and embeddings of target labels for flow matching). This is perhaps
unsurprising: forward- and back-propagation can be understood as information being disseminated across the blocks
of a neural network in order to enable the representation of each block to “fit in” with those of neighbouring blocks
and such that the target label can be easily predicted from the representation at the last block. So for NoProp to
work without forward- or back-propagation, these intermediate representations have to be fixed beforehand, i.e. to be
designed by the user.

The fact that NoProp achieves good performance without global representation learning leads to the question of
whether such learning is in fact necessary for deep learning, and whether by designing representations we can en-
able alternative approaches to deep learning with different characteristics. Specifically, note that representations fixed
in NoProp are not those one might think of as being more abstract in later blocks, which opens the door to revisiting
the role of hierarchical representations in modelling complex behaviour (Markman & Dietrich, 2000). These questions
can become increasingly important as core assumptions of back-propagation based learning, like the i.i.d. assumption
and sequential propagation of information and error signal through the network, are proving to be limiting.

4 EXPERIMENTS

We compare NoProp against back-propagation in the discrete-time case and against the adjoint sensitivity method
(Chen et al., 2018) in the continuous-time case for image classification tasks. Details on the hyperparameters are
provided in Table 4 in the Appendix.

NoProp (discrete-time) We refer to this method as NoProp with Discrete-Time Diffusion (NoProp-DT). We fix
T = 10 and, during each epoch, update the parameters for each time step sequentially, as outlined in Algorithm 1.
While sequential updates are not strictly necessary for the algorithm to work — as time steps can also be sampled —
we choose this approach to align with prior alternative methods to full back-propagation, ensuring consistency with
existing approaches in the literature. In terms of parameterisation of the class probabilities pg,, (y|z7) in Equation 8,
we explore two approaches. The first, as described earlier, involves using softmax on the outputs of a fully connected
layer f with parameters 6,,, such that

Do, (v | zr) = softmax(fg, . (27)) = Zmexp(feout (27)y)

, 14
T exb(famm (1)) (1

where m is the number of classes. As an additional exploration, we investigate an alternative approach that relies on
radial distance to parameterise the class probabilities. In this approach, we estimate a reconstructed label y from zp
by applying softmax to the output of the same fully connected layer fq_,, followed by a projection onto the class
embedding matrix WEgmpbed, such that g is a weighted embedding. The resulting probability of class y given zr is then

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

s oo - i
- 1 " . -

Figure 3: The first row shows class embeddings initialized using the image with the smallest median distance to
all other images within the same class for CIFAR-10. The second row displays the learned class embeddings from
NoProp-DT, which can be interpreted as learned image prototypes for each class.

based on the squared Euclidean distance between § and the true class embedding v, = (Wgmbed)y:
g = softmax(fo... (27)) WEmbed, (15)

exp (_ ||z?;:2y|\2)
D=1 XD (—M%iz) .

This formulation can be interpreted as computing the posterior class probability assuming equal prior class probabili-
ties and a normal likelihood p(§|y) = Ny (g|uy, o2).

Poo (yl2r) = (16)

Back-propagation. We also fix 7' = 10 and the forward pass is given by

2o ~ Ng(20]0,1), (17)

Zt = (1 _at)zt—l +at’&9t(2t_]_,l'), t= 17"'7T7 (18)

y= argmax;c oy . m} ﬁoout (yl|ZT)7 19)

where a4, ..., ar are learnable parameters constrained to the range (—1, 1), defined as a; = tanh(w;) with learnable
wy, ..., wr. This design closely resembles the forward pass of NoProp-DT, but with the network trained by standard

back-propagation. The g, (2:—1, z) and pg_, (y|z7) have identical model structures to those in NoProp-DT.

NoProp (continuous-time) We refer to the continuous-time variants as NoProp with Continuous-Time Diffusion
(NoProp-CT) and NoProp with Flow Matching (NoProp-FM). During training, the time variable ¢ is randomly sampled
from [0, 1]. During inference, we set T = 1000 steps to simulate the diffusion process for NoProp-CT and the
probability flow ODE for NoProp-FM. Detailed training procedures are provided in Algorithms 2 and 3.

Adjoint sensitivity We also evaluate the adjoint sensitivity method (Chen et al., 2018), which trains a neural ODE
using gradients estimated by solving a related adjoint equation backward in time. Including this method provides
a meaningful baseline to assess the efficiency and accuracy of our approach in the continuous-time case. For fair
comparison, we fix 7' = 1000 during both training and inference and use a linear layer for final classification.

Main results Our main results, summarised in Table 1, demonstrate that NoProp-DT achieves performance com-
parable to or better than back-propagation on MNIST, CIFAR-10, and CIFAR-100 in the discrete-time setting. We
also report results from prior alternative methods to full back-propagation, including the Forward-Forward Algorithm,
Difference Target Propagation (Lee et al., 2015), and the Local Greedy Forward Gradient Activity-Perturbed method
(Ren et al., 2022). However, direct comparisons are challenging because NoProp employs a fundamentally different
framework based on conditional diffusion or flow matching, where the input is broadcast to each block (see Figure 2).
While our results surpass previously reported performances of these methods, differences in architectures and model
sizes make direct comparisons difficult, so improvements cannot be solely credited to our approach. Nevertheless,
our results demonstrate that NoProp can achieve non-trivial performance without requiring full forward and backward
passes through the entire network. We also conducted a limited evaluation on Tiny ImageNet, comparing NoProp-DT
with back-propagation, with results shown in Table 2. While the method has not been fully optimized in this paper and
should be viewed as a proof of concept, it provides preliminary evidence that NoProp has the potential to scale beyond
small datasets. Additionally, NoProp demonstrates reduced GPU memory consumption during training, as shown in

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Method MNIST CIFAR-10 CIFAR-100

Train Test Train Test Train Test

Discrete-time

Backprop (one-hot) 100.0£0.0 99.46+0.06 99.98+0.01 79.92+0.14 98.63+x1.34 45.852.07
Backprop (dim=20) 99.99+0.0 99.43+0.03 99.96+0.02 79.3+0.52 94.28+7.43 46.57+0.87
Backprop (prototype) ~ 99.99+0.01 99.44+0.05 99.97+0.01 79.58+0.44 99.19+0.71 47.8+0.19
NoProp-DT (one-hot) 99.92+0.01 99.47+0.05 95.02+0.19 79.25+0.28 84.97+0.67 45.93+£0.46
NoProp-DT (dim=20) 99.93+0.01 99.49+0.04 94.95+0.09 79.12+0.37 83.25+0.39 45.19+0.22
NoProp-DT (prototype) 99.97+0.0 99.54+0.04 97.23+0.11 80.54+0.2 90.7£0.14 46.06x0.25

Continuous-time

Adjoint (one-hot) 98.7£0.13 98.62+0.14 70.64+x0.49 66.78+£0.76 26.72+0.81 25.03+0.7
NoProp-CT (one-hot) ~ 97.88+0.61 97.84+0.71 97.31+0.84 73.35+0.55 75.1+£3.43 33.66+0.5
NoProp-CT (dim=20) 97.7£0.42 97.7x0.51 94.88+3.08 71.77+£2.47 74.22+2.33 33.99+1.08

NoProp-CT (prototype) 97.18+1.02 97.17+0.94 86.2+7.34 66.54+£3.63 40.88+£10.72 21.31+4.17
NoProp-FM (one-hot) 99.97+£0.0 99.21+0.09 98.46+0.4 73.14+0.9 12.69+10.4 6.38+4.9
NoProp-FM (dim=20) 99.99+0.0 99.29+0.05 99.49+0.15 73.5+0.28 83.49+4.62 31.14+0.52

NoProp-FM (prototype) 99.27+0.09 98.52+0.16 99.8+0.03 75.18+0.57 96.37+1.09 37.57+0.32

Previous methods without full back-propagation

Forward-Forward - 98.63 - - - -
Forward Gradient 100.00 97.45 80.61 69.32 - -
Difference Target Prop - 98.06 - 50.71 - -

Table 1: Classification accuracies (%) on MNIST, CIFAR-10, and CIFAR-100. Means and standard errors are com-
puted from 15 values per method, obtained from 3 seeds and 5 inference runs per seed. Forward Gradient refers to the
Local Greedy Forward Gradient Activity-Perturbed (LG-FG-A) method in Ren et al. (2022). one-hot: fixed one-hot
label embedding; dim=20: learned label embedding of dimension 20; prototype: learned label embedding of dimen-
sion equal to image size.

Method Tiny ImageNet
Train Test
Backprop (one-hot) 75.66+£33.67 23.83+6.7

Backprop (prototype) 99.82+0.02 31.26x0.1
NoProp-DT (one-hot) 69.78+1.71 26.55+0.4
NoProp-DT (prototype) 78.45+0.97 25.65+0.19

Table 2: Classification accuracies (%) on Tiny ImageNet in the discrete-time setting. Means and standard errors are
computed from 15 values per method, obtained from 3 seeds and 5 inference runs per seed.

MNIST CIFAR-10 CIFAR-100

My 35 4

100

80 1

X X R 251
= €, =
2 e 9 &
e © ©
S Model S Model 5 151 Model
[SERT o o
g —— NoProp-CT g 307 —— NoProp-CT g 10 4 —— NoProp-CT
NoProp-FM 204 NoProp-FM 54 NoProp-FM
204 - . "
— Adjoint —— Adjoint 0 —— Adjoint
10 q 1
él lDIGO 20‘00 30‘00 4DI00 SD‘UD 6600 él 25‘00 50‘00 75‘00 10600 12_“100 15600 17_‘;00 20600 él 25‘00 5060 75‘00 10600 12!';00 lSUIOO 17.“100
Cumulative Time Cumulative Time Cumulative Time

Figure 4: Test accuracies (%) plotted against cumulative training time (in seconds) for models using one-hot label
embedding in the continuous-time setting. All models within each plot were trained on the same type of GPU to
ensure a fair comparison. NoProp-CT achieves strong performance in terms of both accuracy and speed compared to
adjoint sensitivity. For CIFAR-100, NoProp-FM does not learn effectively with one-hot label embedding.

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Method MNIST CIFAR-10 CIFAR-100
Discrete-time
Backprop 0.87GB 1.17GB 1.73 GB
NoProp-DT 0.49GB 0.64 GB 1.23 GB
Continuous-time
Adjoint 232GB 6.23GB 6.45 GB
NoProp-CT 1.05GB 0.45GB 0.50 GB
NoProp-FM 1.06 GB 0.44 GB 0.49 GB

Table 3: Process GPU memory allocated (in GB) for models using one-hot label embedding.

Table 3. To illustrate the learned class embeddings, Figure 3 visualises both the initializations and the final class
embeddings for CIFAR-10 learned by NoProp-DT, where the embedding dimension matches the image dimension.

In the continuous setting, NoProp-CT and NoProp-FM achieve lower accuracy than NoProp-DT, likely due to the
additional conditioning on time t. However, they generally outperform the adjoint sensitivity method on CIFAR-10
and CIFAR-100, both in terms of accuracy and computational efficiency. While the adjoint method achieves similar
accuracy to NoProp-CT and NoProp-FM on MNIST, it does so much slower, as shown in Figure 4.

For CIFAR-100 with one-hot embeddings, NoProp-FM fails to learn effectively, resulting in very slow accuracy im-
provement. In contrast, NoProp-CT still outperforms the adjoint method. However, once label embeddings are learned
jointly, the performance of NoProp-FM improves significantly.

We also conducted ablation studies on the parameterisations of class probabilities, pg,, (y|27), and the initializations
of the class embedding matrix, Wgmpeq, With results shown in Figure 6 and Figure 7 in the Appendix. The abla-
tion results reveal no consistent advantage between the class probability parameterisations, with performance varying
across datasets. For class embedding initializations, random initializations are comparable to orthogonal and prototype
initializations.

5 CONCLUSION

Using the denoising score matching approach that underlies diffusion models, we have proposed NoProp, a novel
approach for training neural networks without full forward- or back-propagation across network blocks. The method
enables each block of the neural network to be trained independently to predict the target label given a noisy la-
bel and the training input, while at inference time, each block takes the noisy label produced by the previous block
and denoises it by taking a step towards the label it predicts. Our experiments show that NoProp is a viable learning
algorithm, achieving performance comparable to full back-propagation on the same architecture, while offering advan-
tages in biological plausibility and enabling parallel training. However, our experiments focus on relatively small-scale
classification datasets, and evaluating NoProp on larger datasets with higher-resolution inputs will be an important di-
rection for future work. In particular, scaling will require addressing the cost of broadcasting high-dimensional inputs
to all blocks and potentially optimizing communication strategies between blocks while preserving locality. While we
have applied NoProp only to classification tasks, the underlying framework of block-wise local training may be useful
in broader settings. For example, in continual learning, the lack of gradient flow across blocks might help localize task
interference, potentially reducing catastrophic forgetting. Although we do not investigate this directly, we highlight it
as a possible direction for future research. We believe that the perspective of training neural networks via denoising
score matching opens up new possibilities for training deep learning models without full back-propagation, and we
hope that our work will inspire further research in this direction.

ACKNOWLEDGMENTS

Qinyu Li is supported by the Oxford-Radcliffe Graduate Scholarship and the EPSRC CDT in Modern Statistics and
Statistical Machine Learning (EP/S023151/1).

10

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

REFERENCES

David Balduzzi, Hastagiri Vanchinathan, and Joachim Buhmann. Kickback cuts backprop’s red-tape: Biologically
plausible credit assignment in neural networks, 2014. URL https://arxiv.org/abs/1411.6191.

Atilim Giines Baydin, Barak A. Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients without backpropa-
gation, 2022. URL https://arxiv.org/abs/2202.08587.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale to imagenet,
2019. URL https://arxiv.org/abs/1812.11446.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. IEEE
Trans. Pattern Anal. Mach. Intell., 35(8):1798-1828, August 2013. ISSN 0162-8828.

David Bortz and Carl Kelley. The simplex gradient and noisy optimization problems. Computational Methods for
Optimal Design and Control, 02 1997.

Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. In Samuel Kaski
and Jukka Corander (eds.), Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics, volume 33 of Proceedings of Machine Learning Research, pp. 10-19, Reykjavik, Iceland, 22-25 Apr
2014. PMLR.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

David G. Clark, L. F. Abbott, and SueYeon Chung. Credit assignment through broadcasting a global error vector,
2021. URL https://arxiv.org/abs/2106.04089.

Andrew Conn, Nicholas Gould, and Philippe Toint. Trust region methods. SIAM, 2000.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-order convex
optimization: The power of two function evaluations. IEEE Transactions on Information Theory, 61(5):2788-2806,
2015.

E. Fermi. Numerical solution of a minimum problem. Technical report, Los Alamos Scientific Lab., Los Alamos,
NM, 11 1952.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in the bandit
setting: gradient descent without a gradient. arXiv preprint cs/0408007, 2004.

Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and Linli Xu. Difformer: Empowering
diffusion models on the embedding space for text generation. arXiv preprint arXiv:2212.09412, 2022.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cognitive science, 11
(1):23-63, 1987.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. Advances in Neural
Information Processing Systems, 36, 2024.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual learning in deep
neural networks. Trends in Cognitive Sciences, 24(12):1028-1040, 2020.

Manu Srinath Halvagal and Friedemann Zenke. The combination of hebbian and predictive plasticity learns invariant
object representations in deep sensory networks. Nature Neuroscience, 26(11):1906-1915, 2023.

Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression diffusion models. Advances
in Neural Information Processing Systems, 35:18100—18115, 2022.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint arXiv:2212.13345,
2022.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527-1554, 2006.

11

https://arxiv.org/abs/1411.6191
https://arxiv.org/abs/2202.08587
https://arxiv.org/abs/1812.11446
https://arxiv.org/abs/2106.04089

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840-6851, 2020.

Vincent Hu, Di Wu, Yuki Asano, Pascal Mettes, Basura Fernando, Bjorn Ommer, and Cees Snoek. Flow matching for
conditional text generation in a few sampling steps. In Proceedings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 380-392, 2024.

Bernd Illing, Jean Ventura, Guillaume Bellec, and Wulfram Gerstner. Local plasticity rules can learn deep repre-
sentations using self-supervised contrastive predictions. Advances in neural information processing systems, 34:
30365-30379, 2021.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David Silver, and Koray
Kavukcuoglu. Decoupled neural interfaces using synthetic gradients, 2017. URL https://arxiv.org/abs/
1608.05343.

Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep learning without
feedback. arXiv preprint arXiv:2209.11883, 2022.

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning. Advances in Neural
Information Processing Systems, 31, 2018.

Semin Kim, Jachoon Yoo, Jinwoo Kim, Yeonwoo Cha, Saechoon Kim, and Seunghoon Hong. Simulation-free training
of neural odes on paired data. Advances in Neural Information Processing Systems, 37:60212-60236, 2025.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances in neural
information processing systems, 34:21696-21707, 2021.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015, Porto, Portugal,
September 7-11, 2015, Proceedings, Part I 15, pp. 498-515. Springer, 2015.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML °09, pp. 609-616, New York, NY, USA, 2009. Association for Computing Machin-
ery. ISBN 9781605585161. doi: 10.1145/1553374.1553453. URL https://doi.org/10.1145/1553374.
1553453.

Timothy P. Lillicrap, Daniel Cownden, Douglas Blair Tweed, and Colin J. Akerman. Random synaptic feedback
weights support error backpropagation for deep learning. Nature Communications, 7, 2016. URL https://
api.semanticscholar.org/CorpusID:10050777.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O. Hero III, and Pramod K. Varshney. A primer on
zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and applications.
IEEE Signal Processing Magazine, 37(5):43-54, 2020.

Sindy Lowe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated learning of
representations. Advances in neural information processing systems, 32, 2019.

Arthur B. Markman and Eric Dietrich. In defense of representation. Cognitive Psychology, 40(2):138-171, 2000.

Yurii Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex functions. Foundations of
Computational Mathematics, 17:527 — 566, 2015.

Arild Ngkland. Direct feedback alignment provides learning in deep neural networks, 2016. URL https://arxiv.
org/abs/1609.01596.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with local losses. arXiv
preprint arXiv:2210.03310, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors.
nature, 323(6088):533-536, 1986.

12

https://arxiv.org/abs/1608.05343
https://arxiv.org/abs/1608.05343
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://api.semanticscholar.org/CorpusID:10050777
https://api.semanticscholar.org/CorpusID:10050777
https://arxiv.org/abs/1609.01596
https://arxiv.org/abs/1609.01596

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a scalable alternative
to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of plateaus in deep
reinforcement learning, 2019.

Shoaib Ahmed Siddiqui, David Krueger, Yann LeCun, and Stéphane Deny. Blockwise self-supervised learning at
scale. arXiv preprint arXiv:2302.01647, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2256-2265, Lille,
France, 07-09 Jul 2015. PMLR.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based diffusion
models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, volume 34. Curran Associates, Inc., 2021.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Deep
neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement
learning. ArXiv, abs/1712.06567, 2017.

Mufeng Tang, Yibo Yang, and Yali Amit. Biologically plausible training mechanisms for self-supervised learning in
deep networks. Frontiers in Computational Neuroscience, 16, March 2022. ISSN 1662-5188. doi: 10.3389/fncom.
2022.789253. URL http://dx.doi.org/10.3389/fncom.2022.789253.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf,
and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal transport.
arXiv preprint arXiv:2302.00482, 2023.

Virginia Torczon. On the convergence of the multidirectional search algorithm. SIAM Journal on Optimization, 1(1):
123-145, 1991.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jiirgen Schmidhuber. Natural evolution
strategies. The Journal of Machine Learning Research, 15(1):949-980, 2014.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In David Fleet, Tomas
Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision — ECCV 2014, pp. 818-833, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-10590-1.

13

http://dx.doi.org/10.3389/fncom.2022.789253

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

A DERIVATIONS OF TRAINING OBJECTIVES OF NOPROP

For completeness, we include derivations of the training objectives of NoProp-DT and NoProp-CT, closely following
Sohl-Dickstein et al. (2015) and Kingma et al. (2021).

A.1 DERIVATION OF EQUATION 4

logp(yl2) = log | p((z0) L, yla)d() Ty 0)
P((z0)iz0,yl)a((20)ioly,) 7
~1 d(z)T 21
o | e G ey
p((zt);—an|x):|

=logE T — = s 22

08 Eq((z)T_yly.2) [q((zt)?_ow’m) (22)

> Ey(enT o) 1082((20) 10, ylz) —log a((20)ioly,)] - (23)

The last step follows from Jensen’s inequality, yielding a lower bound on log p(y|z). This bound is commonly referred
to as the evidence lower bound (ELBO).

A2 q(zt-1|2t) AND q(zt|y)

We will use the reparameterization trick to derive the expressions for ¢(z:|y) and ¢(z¢|zs). The reparameterization
trick allows us to rewrite a random variable sampled from a distribution in terms of a deterministic function of a noise
variable. Specifically, for a Gaussian random variable z ~ Ny(z|u, 0%), we can reparameterize it as:

z=pu+oe, e~ Ny(e0,1). (24)

Let {€f, e }{—g, €5, €y ~ Na(0, 1). Then, for any sample z; ~ q(z|z,) forany 0 <t < s < T, it can be expressed as

Zt = A/ OZi41 + 1-— Oét€:+1 (25)
= Oét(w/at+lzt+2 + \/ 1-— Oét+1€:+2) + vV 1-— at5r+1 (26)
= /OO 412142 —+ \/ Qg — atat+1€2<+2 —+ \/1 — Oétﬁr_,’_l (27)
= Vaaizge +V (a — araps) + (1 — ap)erya (28)
= oz 12i42 + /1 — 16440 (29)
s—1 s—1
=TT sz + 4| 1= I e (30)
i=t i=t
=2 11— S, 31)
Qg Qg
Hence,
Q o
q(ze)2s) = Na(ze]y [=4, 1 — =2). (32)
Qg Qg
In particular,
q(ze—1]2t) = Na(ze—a1|v/ou—12e, 1 — o—1). (33)
Similarly, it can be shown that
q(2tly) = Na(ze|Vaiuy, 1 — ay). (34)

14

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

A3 Q(ztlztflu y)

Applying the Bayes’ theorem, we can obtain the posterior density

q(ztlze-1,y) < q(ze|y)q(ze—1]2) (35)
o Na(ze|vVaguy, 1 — a)Na(ze—1 Vo121 — ay_1) (36)
1
X exp (—M(zt — @uy)T(zt — Vaguy) (37)
1
—m(zt—l - \/Oét—lzt)T(Zt—l - \/Oétlzt)) (38)
1
X exp (—QCt(zt — Nt(zt,l,uy))T(zt — ut(ztl,uy))> . (39)

Hence we have q(z¢|z¢—1,y) = Na(z¢|pe(ze—1,uy), ¢t), where

Vo (l — o Voi—1(1l—a
e,y = YO0, EEICLL) (40)
— Q1 1—ay
1—a)(1—a
o= Il —ar) (41)
1—a;

A.4 OBIECTIVES OF NOPROP-DT AND NOPROP-CT

Starting from the ELBO derived in Appendix A.1, we have

p((zt)g;oymx)
log p(y|7) > Ey((:)7 |y [log — (42)
q((l)t:O‘y’) q((t)zzo‘yax)

p(z0) (T, p(atlze1,2)) pylar)

=K T 10 (43)
a((z){=oly) &)
’ QQTW)GILTQQPJVQ)
I p(20)p y\ZT p(ze|zi-1, @
—E log BEVPYIET) 44
O L P II ztﬂ%, “4)
i T
_ p(20)p(yl2r) p(zt|z1,7)
- EQ((zt)?zo‘y) IOg W + log H q(zelze—1,9)q(ze—1]y) (45)
L t=1 q(ztly)
—E I%M%WMWXH%ﬂWW Hp%%1, 46)
(0Tl |8y (o) Gele 1y
B T
p(z0)p(yl2r) p(2t|z-1,7)
=E, .yt 1 |log DoZPIET) 4, @7)
a((ze)izoly) I & 4(ly) gtl_ll q(zt|ze-1,9)
—E log p(y|2r)] +E + log PEtE=1.2) | 4
= Ba((z0)7,ly) LOBPWIZT a((z0)1=olv) Eq((z0Zolw) 1Czelze1,9)
= Eqzr1y) log 2yl 2r)] + Eqzo)y) [log p(z0)] + Eq(zf L) [log W} (49)
q(zoly) = q(2t|ze-1,y)
T

= Ey(zrly) [log p(yl2r)] — Dxr.(a(20ly)lp(20)) }: Eq(zorly) [Pxr(a(zelze—1, y)[p(z]2e-1, 2))] -

(50)

15

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Since ¢(z¢|zi—1,y) and p(z]|z—1,z) are both Gaussian, with q(z|z—1,y) = Nal(ze|pe(zi-1,uy),c;) and
p(zt|zt—1,) = Na(zt|pe(ze—1, G, (2t—1, T)), ct), their KL divergence is available in closed form:
1 .
Dxr(q(2t]2e—1,9)p(2t|2e-1,2)) = %”/‘Lt(ztflﬂuot(ztflwr)) — pe(ze—1,uy)|? (51
t
1 dt(l—at,l)Q " 2
= ol 1) — 52
2, (1_dt—1)2 HUgt(Zt 1,%) uy” (52)
1—ay_ a(l—ay_q1)?, .
_ t—1 t(t 1) ||U0t(Zt_1,Jj) _ uy||2 (53)

2(1 — dt)(l — O[tfl) (]. — dt,1)2
O_Zt(l —Oltfl)

. ~ o 2

- 2(1 _ dt)(l _ dt—l) ||u9t (Zt—lvx) uyH (54)

B 1 Qg _ Q1 N _ 2

= 2(1 e 1o dtil)HUQn(zt—lax) uy| (55)
1 .

= 5(SNR(t) — SNR(t — 1))||tig, (2—1, 7) — uy||*. (56)

Using po,, (y|27) to estimate p(y|z7), the ELBO becomes

Eq(zry) (108 Do, (yl27)] = Dxcr(a(z0[9) [p(20)) — % Y Eqteesly) [(SNR(t) = SNR(t — 1)) g, (z0-1,) — uy||*] .
t=1

(57)
Instead of computing all 7" terms in the sum, we replace it with an unbiased estimator, which gives

. T N
Eq(zrly) (108 Do (y127)] = Dicr.(a(201)[P(20) = 5 Bmae(1,7y, (21 1y [(SNR(E) = SNR(E = 1)) [, (201, 7) — uy [|*] -
(58)
With an additional hyperparameter 1 in Equation 8, this yields the NoProp objective in the discrete-time case. How-
ever, note that in our experiments, we choose to iterate over the values of ¢ from 1 to 7" instead of sampling random
values. Details can be found in Algorithm 1.

In the continuous-time case where ¢ is scaled to the range (0, 1), let 7 = 1/7". If we rewrite the term involving SNR in
the NoProp objective as
1 SNR(t + 7) — SNR(%)

§Et~u[o,1] - [(20, 2z, t) — uy|?| . (59)
As T — o0, this becomes)
§Et~u{0,1} [SNR'(t)|tg (2e, x,t) — uy] - (60)

Again, with an additional hyperparameter 7, this gives the NoProp objective in the continuous-time case in Equation 9.

B TRAINABLE NOISE SCHEDULE FOR NOPROP-CT

Following Kingma et al. (2021) and Gulrajani & Hashimoto (2024), we parameterize the signal-to-noise ratio (SNR)
as

SNR(t) = exp(—(t)), (65)
where ~y(t) is a learnable function that determines the rate of noise decay. To ensure consistency with our formulation,
~(t) must be monotonically decreasing in ¢.

We implement ~y(¢) using a neural network-based parameterization. Specifically, we define an intermediate function
~(t), which is normalized to the unit interval:

() = 1010, (66)
(1) = 4(0)
where 7(t) is modeled as a two-layer neural network where the weights are restricted to be positive.
To align with our paper’s formulation where ~(¢) should decrease with ¢, we define:
() =7 + (1 =) (1 =), (67)
where o and ~y; are trainable endpoints of the noise schedule. Finally, we obtain the noise schedule &; = o(—~(t)).

16

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Dataset Method Batch Size Epochs Optimiser Learning Rate Weight Decay Timesteps 7
Backprop 128 100 AdamW 0.001 0.001 10 -
NoProp-DT 128 100 AdamW 0.001 0.001 10 0.1
MNIST Adjoint 128 2 AdamW 0.001 0.001 1000 -
NoProp-CT 128 100 Adam 0.001 0.001 1000 1
NoProp-FM 128 100 Adam 0.001 0.001 1000 -
Backprop 128 150 AdamW 0.001 0.001 10 -
NoProp-DT 128 150 AdamW 0.001 0.001 10 0.1
CIFAR-10 Adjoint 128 4 AdamW 0.001 0.001 1000 -
NoProp-CT 128 500 Adam 0.001 0.001 1000 1
NoProp-FM 128 500 Adam 0.001 0.001 1000 -
Backprop 128 150 AdamW 0.001 0.001 10 -
NoProp-DT 128 150 AdamW 0.001 0.001 10 0.1
CIFAR-100 Adjoint 128 4 AdamW 0.001 0.001 1000 -
NoProp-CT 128 1000 Adam 0.001 0.001 1000 1
NoProp-FM 128 1000 Adam 0.001 0.001 1000 -
Table 4: Experiment details. 7 is the hyperparameter in Equations 8 and 9.
@ noised label z; ;
=
conv__ |3 Stene —
ReLU Loconv RS
conv__Jsechamas
RelU | conv [t Y
RelU RelLU FC (256) pos emb (s4)
ozt ReLU
ReLU (T i Rett
©
faten

concat

FC (256)

RelLU

FC (28)

RelLU

FC (num classes)

RelLU

A 4
concat

FC (256)
RelLU

FC (128)
RelLU

FC (num classes)

Figure 5: Models used for training when the class embedding dimension is different from the image dimension. Left:
model for the discrete-time case. For Tiny ImageNet, an additional convolutional layer with 256 output channels,
followed by ReLU, 2x2 max pooling, and dropout (p = 0.2), is inserted before concatenation. Right: model for the
continuous-time case. conv: convolutional layer. FC: fully connected layer (number in parentheses indicates units).
concat: concatenation. pos emb: positional embedding (number in parentheses indicates time embedding dimension).
When the class embedding dimension matches the image dimension, the noised label and the image are processed in
the same way before concatenation in each model. Note that batch normalization is not included in the continuous-

time model.

17

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

00,65 MNIST CIFAR-10 CIFAR-100
Class Probability 8151 Class Probability 46501 Class Probability
99601 [softmax a0l 3 softmax 46251 [softmax
: [posterior < [posterior $ 4600{ [posterior
~ 99.55 ~ ~
> > 805 3 45.75 J l
© © ©
5 99.50 5 80.0 5 4550
ot v o]
< 9045 < 795 < 45.25
45.00
79.0
99.40 4475
one-hot dim=20 protdtype one-hot dim=20 prototype one-hot dim=20 protdtype

Figure 6: Test accuracy (%) comparison for two parameterisations of class probabilities pg,, (y|27) in Equation 8,
using either softmax or posterior probability.

MNIST CIFAR-10 CIFAR-100
99.58 46.75
81.2 4
99.56 46.50
-5 8104
99.54 ' [
45.25 J

45.00
orthogonal prototype random orthogonal prototype random orthogonal prototype random

Accuracy (%)
8
—
|—
'—
Accuracy (%
g 8
> @
'—

—t—
Accuracy (%)

s & & a
& & 5 8
o 2 2 32
g 3 8 n
'—

—

Figure 7: Test accuracy (%) comparison for different initializations of the class embedding matrix Wgppeq When
the class embedding dimension matches the image dimension. The initializations considered are random matrices,
orthogonal matrices, and prototype images.

Dataset One-hot Prototype Label dim Params
Discrete-time

MNIST Yes No 10 0.92M
No No 20 0.92M
No Yes 784 1.40M

CIFAR-10 Yes No 10 1.22M
No No 20 1.22M
No Yes 3072 1.99M

CIFAR-100 Yes No 100 1.25M
No No 20 1.23M
No Yes 3072 2.00M

Tiny ImageNet Yes No 200 2.45M
No Yes 12288 4.30M

Continuous-time

MNIST Yes No 10 0.87M
No No 20 0.87M
No Yes 784 1.48M

CIFAR-10 Yes No 10 1.16M
No No 20 1.17M
No Yes 3072 2.07M

CIFAR-100 Yes No 100 1.20M
No No 20 1.18M
No Yes 3072 2.08M

Table 5: Model parameters.

18

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Algorithm 1 NoProp-DT (Training)

Require: 7 diffusion steps, dataset {(z;, y;) i\;l, batch size B, hyperparameter 7, embedding matrix Wepped, param-
eters {0;}7_, Oour, noise schedule {a; }7
fort =1toT do
for each mini-batch B C {(z;,y;)}Y, of size B do
for each (z;,y;) € Bdo
Obtain label embedding w,, = {Wgmbed }y, -
Sample z;; ~ Ng(ze,i|/Qutiy,i, 1 — ay).
end for
Compute the loss function:

1 .
Et = E Z [_ logpeoul(yi‘zT’i)]

ieB
1

+ 5 2 DrulaCzolyollp(0))

i€B

T N 2

+ 550 Z (SNR(t) — SNR(t — 1)) ||dig, (2t—1.5, i) — uy, |- (61)

i€EB
Update 60y, 0oy, and Wgmpeq using gradient-based optimization.
end for
end for

Algorithm 2 NoProp-CT (Training)

Require: dataset {(z;,y;) ij\il, batch size B, hyperparameter 7, embedding matrix Wgppeq, parameters 6, 6, noise
schedule &, = o(—y (1))
for each mini-batch B C {(z;,y;)}Y, with size B do
for each (z;,y;) € Bdo
Obtain label embedding u,, = {WEembed }y, -
Sample ¢; ~ U(0,1).
Sample 2, ; ~ Ny(z, ilv/Q,y,i, 1 — 0u,).
end for
Compute the loss function:

1 A~
L= B ; [— log Pa,, (yil21,i)]

1
+ B Z Dxr.(q(20ly:)[Ip(20))
icB
1 .
+ @W-EZBSNR/(Q) [t (21,05 @i ts) — g, || - (62)

Update 6, 0oy, ¥, and Weppeq using gradient-based optimization.
end for

19

Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

Algorithm 3 NoProp-FM (Training)

Require: dataset {(z;,y;)}},, batch size B, embedding matrix Weyped, parameters 6, 6oy

for each mini-batch B C {(z;,v;)}}L, with size B do

for each (z;,y;) € Bdo
Obtain label embedding w,, = {Wgmped }y; and set z1 ; = u,,.
Sample zg; ~ Ng(204[0,1).
Sample ¢; ~ U(0, 1).
Sample 2y, ; ~ Na(zt,i | tiz1,i + (1 —t;)20,i,02).

end for

Compute the loss function:

1
EZ}EE:W@@%m%Jﬁ_(@J_ZW”R

icB
if WEmbeq has learnable parameters then
for each (z;,y;) € B do

Compute the extrapolated linear estimate 21 ; = 2y, ; + (1 — t;)vo(2¢, 4, Ti, ti)-

end for
Modify the loss function:

1 . -
L+ L— E Z logpgout (yz ‘ Zl,i)-
i€B
end if

Update 6, 04y, and Wgnpeq using gradient-based optimization.
end for

(63)

(64)

20

	Introduction
	Methodology
	NoProp
	Variations
	Fixed and learnable WEmbed
	Continuous-time diffusion models and neural ODEs
	Flow matching

	Implementation details
	Architecture
	Training procedure

	Related Works
	Alternative Methods to Back-propagation
	Diffusion and flow matching
	Representation Learning

	Experiments
	Conclusion
	Derivations of training objectives of NoProp
	Derivation of Equation 4
	q(zt-1|zt) and q(zt|y)
	q(zt | zt-1, y)
	Objectives of NoProp-DT and NoProp-CT

	Trainable noise schedule for NoProp-CT

